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Math 124 Section

HONOR STATEMENT
I affirm that my work upholds the highest standards of honesty and academic integrity at
the Universily of Washinglon, and that T have neither given nor received any unauthorized
assistance on this exa,
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& You have 80 minutes for 8 problems. Check your copy of the exam for completeness.

o Yo are allowed to nse a hand written sheet of paper (8x11 in), back and front.

o Caleulator : TT 30 X,

s Justity all vour answers and show vour work for credit.

s Some credit is given for adhering to formal asprets such as keeping the limit svmbol

unlil vou Lake the limiu, selling correet parenthoses cle.

o ATl answoers must be exacl, no rounding,

Do nol open the teal until evervone hias a copy and the slart of the test is announced.

GOOD LUCK!



Problem 1. Find the limit of the following expression. Your answer must be a real number
(exact value), 0o, —oo, or DNE, whatever fits best. Justify all your work algebraically.
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Problem 2. Find the limit of the following expression. Your answer must be a real number
(exact value), oo, —oo, or DNE, whatever fits best. Justify all your work algebraically.
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Problem 3. Find the derivative of f(z) = cos(z)sin(z) + 3¢”
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Problem 4. Find the tangent line equation to the graph of

flz) = \J/EE—:_IQ at ¢ = 1.

Do not round.
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Problem 5.

Assume that f is a function so that f(2) = 0, f'(2) = —1, and f”(2) = 2. For each of
the following options argue why it can or why it can not be the graph of f locally around
T =2.
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Problem 6. Consider the function fla) — 2 — 4w — 1. There are two tangent lines to the
graph of f{z] that have r-intercept 4. Iind both points of tangency.
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Problem 7. Consider the following graph of the function f(z). In the given blank coor-
dinate system sketch the graph of f’(z). Be sure to correctly sketch

e Where f’(z) is positive/negative or equal to 0.
e Where f’(z) is constant and what value that constant is.
e Where f’(z) is increasing and where it is decreasing.

e Where f’(z) is not defined.




Problem 8. The temperature of a probe in a laboratory is described by the function

202 + 1
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where T is the temperature in Celsius and z is time in minutes. We only consider times
x> 0.

(a) Why is it true that the temperature always increases?

(b) Which temperature is the probe getting closer and closer to after sitting in the
laboratory for a very long time?
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