124 fa	II22_midt	terml														
Saturday, Octo		:06 PM														
PDF																
124_fall22																
	Math 124 S	Section		Mid	term :	I, Octo	ober 2	5th		Autu	mn 2	022				
	HONOR STA		ין			,										
	I affirm that the Universit	my work u	ipholds th													
	assistance on			CI BHALL	Have i	пеньнег	giveiri	ior rece	ived a	ny una	шыю	ized				
	Name					Signat	ure									
					E)											
	Student ID	#					1	/	- \	1						
							K	\t	_ `	\forall						
							-									
		1. 2	. 3.	4.	5.	6.	7.	8.	ΙΣ.							
		10 1		10	10	10	10	10	<u>S</u>							
	• You ha	ve 80 minu	ites for 8 i	problem	ıs. Che	ek vou	r copy (of the e	xam fe	or com	pleter	iess.				
		e allowed t														
		ator : TI 30														
	• Justify	all your ar	nswers an	d show	your w	ork for	credit.									
	• Some e	redit is giv	en for adl	hering t	o form	al aspe	ets suc	h as kec	eping t	he lin	nit syn	nbol				
	**************************************	ou take the		(O-10) ***		arentho	eses etc									
	• An ans	wers must	be exact,	no rou	namg.											
	Do not open	the test u	ntil every	one has	а сору	and th	ne start	of the	test is	anno	unced					
				GC	OD L	UCK!										

Problem 1. Find the limit of the following expression. Your answer must be a real number (exact value), ∞ , $-\infty$, or DNE, whatever fits best. Justify all your work algebraically.

$$\lim_{x \to 2^+} \left(\frac{\sqrt{x^2 - 4}}{x - 2} \right).$$

$$\lim_{x\to 2^+} \frac{x^2-4}{x-2} = \lim_{x\to 2^+} \frac{x+2}{x-2} = \lim_{x\to 2^+} \frac{x+2}{x-2} = 00$$

Problem 2. Find the limit of the following expression. Your answer must be a real number (exact value), ∞ , $-\infty$, or DNE, whatever fits **best**. Justify all your work algebraically.

$$\lim_{x \to 0} \left(\frac{1}{x\sqrt{x+1}} - \frac{1}{x} \right).$$

$$\lim_{x \to 0} \left(\frac{1}{1+x^{1}} - \frac{1}{\lambda} \right) = \lim_{x \to 0} \frac{1 - [x+1]}{x^{1}} = \lim_{x \to 0} \frac{(1-[x+1])(1+[x+1])}{x^{1}}$$

$$\lim_{x \to 0} \left(\frac{1}{\lambda} - \frac{1}{\lambda} \right) = \lim_{x \to 0} \frac{1 - [x+1]}{x^{1}} = \lim_{x \to 0} \frac{(1-[x+1])(1+[x+1])}{x^{1}}$$

Problem 3. Find the derivative of $f(x) = \cos(x)\sin(x) + 3e^x$ $f(x) = -\sin x \cdot \sin x + \cos x \cdot \cos x + 3e^{x}$ 4

Problem 4. Find the tangent line equation to the graph of

$$f(x) = \frac{x+1}{\sqrt{x}+2}$$
 at $x = 1$.

Do not round.

point of langency:
$$(1,\frac{2}{8})$$

slope: $f'(x) = \frac{(x+2-(x+1)\frac{1}{2(x-1)})}{((x+2)^2)}$

$$f'(1) = \frac{3-1}{3^2} = \frac{2}{9}$$

tangent line equation:

$$y = \frac{2}{9}(x-1) + \frac{2}{3}$$

Problem 5.

Assume that f is a function so that f(2) = 0, f'(2) = -1, and f''(2) = 2. For **each** of the following options argue why it can **or** why it can not be the graph of f locally around x = 2.

=) A shows decreasing a concave up shape.

Problem 6. Consider the function $f(x) = x^2 - 4x - 1$. There are two tangent lines to the graph of f(x) that have x-intercept 4. Find both points of tangency.

- · pt of tangency not given · flat=2x-4
- 1) (a,b) on curve: b= 2-4a+1
- 2) tangent line slope: Tise = floa), 50

$$\frac{b-0}{a-4} = 2a-4$$
 (=> $b = (2a-4)(a-4)$

3) Combine
$$1/2$$
: $a^2-4a+1=2a^2-8a-4a+1$

(=)
$$a=5 \text{ or } = 3$$

=)
$$0 = 5$$
, then $b = 25 - 20 + 1 = 6 \rightarrow (5,6)$
 $0 = 3$, then $b = 9 - 12 + 1 = -2 \rightarrow (3,-2)$

Problem 7. Consider the following graph of the function f(x). In the given blank coordinate system sketch the graph of f'(x). Be sure to correctly sketch

- Where f'(x) is positive/negative or equal to 0.
- Where f'(x) is constant and what value that constant is.
- Where f'(x) is increasing and where it is decreasing.
- Where f'(x) is not defined.

Problem 8. The temperature of a probe in a laboratory is described by the function

$$T(x) = \frac{2x^2 + 1}{x^2 + 3},$$

where T is the temperature in Celsius and x is time in minutes. We only consider times $x \geq 0$.

- (a) Why is it true that the temperature always increases?
- (b) Which temperature is the probe getting closer and closer to after sitting in the laboratory for a very long time?
- a) A function is increasing if its derivative is positive $T'(x) = \frac{4x(x^2+3) (2x^2+1)2x}{(x^2+3)^2} = \frac{4x^3+12x-4x^3-2x}{(x^2+3)^2}$

= Tor all positive times, (x2+3)2 this derivative is positive, so TCX) is increasing.

b) Long time = $x \to \infty$: $\lim_{x\to\infty} \frac{2x^2+1}{x^2+3} = \lim_{x\to\infty} \frac{2+x^2}{1+3} = 2$

-) The probe nears the temperature 2°C when it is observed for a very long time.

