HONOR STATEMENT

I affirm that my work upholds the highest standards of honesty and academic integrity at the University of Washington, and that I have neither given nor received any unauthorized assistance on this exam.

Name		

Signature

Student ID #

1.	2.	3.	4.	5.	6.	7.	8.	\sum
10	10	10	10	10	10	10	10	80

- You have 80 minutes for 8 problems. Check your copy of the exam for completeness.
- You are allowed to use a hand written sheet of paper (8x11 in), back and front.
- Calculator : TI 30 X.
- Justify all your answers and show your work for credit.
- Some credit is given for adhering to formal aspects such as keeping the limit symbol until you take the limit, setting correct parentheses etc.
- All answers must be exact, no rounding.

Do not open the test until everyone has a copy and the start of the test is announced.

GOOD LUCK!

Problem 1. Find the limit of the following expression. Your answer must be a real number (exact value), ∞ , $-\infty$, or DNE, whatever fits best. Justify all your work algebraically.

$$\lim_{x \to 2^+} \left(\frac{\sqrt{x^2 - 4}}{x - 2}\right).$$

Problem 2. Find the limit of the following expression. Your answer must be a real number (exact value), ∞ , $-\infty$, or DNE, whatever fits **best**. Justify all your work algebraically.

$$\lim_{x \to 0} \left(\frac{1}{x\sqrt{x+1}} - \frac{1}{x} \right).$$

Problem 3. Find the derivative of $f(x) = \cos(x)\sin(x) + 3e^x$

Problem 4. Find the tangent line equation to the graph of

$$f(x) = \frac{x+1}{\sqrt{x+2}}$$
 at $x = 1$.

Do not round.

Problem 5.

Assume that f is a function so that f(2) = 0, f'(2) = -1, and f''(2) = 2. For **each** of the following options argue why it can **or** why it can not be the graph of f locally around x = 2.

Problem 6. Consider the function $f(x) = x^2 - 4x + 1$. There are two tangent lines to the graph of f(x) that have x-intercept 4. Find both points of tangency.

Problem 7. Consider the following graph of the function f(x). In the given blank coordinate system sketch the graph of f'(x). Be sure to correctly sketch

- Where f'(x) is positive/negative or equal to 0.
- Where f'(x) is constant and what value that constant is.
- Where f'(x) is increasing and where it is decreasing.
- Where f'(x) is not defined.

Problem 8. The temperature of a probe in a laboratory is described by the function

$$T(x) = \frac{2x^2 + 1}{x^2 + 3},$$

where T is the temperature in Celsius and x is time in minutes. We only consider times $x \ge 0$.

- (a) Why is it true that the temperature always increases?
- (b) Which temperature is the probe getting closer and closer to after sitting in the laboratory for a very long time?