HONOR STATEMENT

I affirm that my work upholds the highest standards of honesty and academic integrity at the University of Washington, and that I have neither given nor received any unauthorized assistance on this exam.

Name
\square

Signature
\square

Student ID \#

1.	2.	3.	4.	5.	6.	7.	8.	\sum
10	10	10	10	10	10	10	10	80

- You have 80 minutes for 8 problems. Check your copy of the exam for completeness.
- You are allowed to use a hand written sheet of paper (8 x 11 in), back and front.
- Calculator : TI 30 X .
- Justify all your answers and show your work for credit.
- Some credit is given for adhering to formal aspects such as keeping the limit symbol until you take the limit, setting correct parentheses etc.
- All answers must be exact, no rounding.

Do not open the test until everyone has a copy and the start of the test is announced.

Problem 1. Find the limit of the following expression. Your answer must be a real number (exact value), $\infty,-\infty$, or DNE, whatever fits best. Justify all your work algebraically.

$$
\lim _{x \rightarrow 2^{+}}\left(\frac{\sqrt{x^{2}-4}}{x-2}\right) .
$$

Problem 2. Find the limit of the following expression. Your answer must be a real number (exact value), $\infty,-\infty$, or DNE, whatever fits best. Justify all your work algebraically.

$$
\lim _{x \rightarrow 0}\left(\frac{1}{x \sqrt{x+1}}-\frac{1}{x}\right)
$$

Problem 3. Find the derivative of $f(x)=\cos (x) \sin (x)+3 e^{x}$

Problem 4. Find the tangent line equation to the graph of

$$
f(x)=\frac{x+1}{\sqrt{x}+2} \text { at } x=1 .
$$

Do not round.

Problem 5.

Assume that f is a function so that $f(2)=0, f^{\prime}(2)=-1$, and $f^{\prime \prime}(2)=2$. For each of the following options argue why it can or why it can not be the graph of f locally around $x=2$.

Problem 6. Consider the function $f(x)=x^{2}-4 x+1$. There are two tangent lines to the graph of $f(x)$ that have x-intercept 4 . Find both points of tangency.

Problem 7. Consider the following graph of the function $f(x)$. In the given blank coordinate system sketch the graph of $f^{\prime}(x)$. Be sure to correctly sketch

- Where $f^{\prime}(x)$ is positive/negative or equal to 0 .
- Where $f^{\prime}(x)$ is constant and what value that constant is.
- Where $f^{\prime}(x)$ is increasing and where it is decreasing.
- Where $f^{\prime}(x)$ is not defined.

Problem 8. The temperature of a probe in a laboratory is described by the function

$$
T(x)=\frac{2 x^{2}+1}{x^{2}+3}
$$

where T is the temperature in Celsius and x is time in minutes. We only consider times $x \geq 0$.
(a) Why is it true that the temperature always increases?
(b) Which temperature is the probe getting closer and closer to after sitting in the laboratory for a very long time?

