MATH 124 Midterm 1
October 25, 2022

Name: \qquad
Student \#: \qquad

Problem:	1	2	3	4	5	Total
Points:	15	15	15	8	7	60

INSTRUCTIONS:

- You have 80 minutes to take the test.
- There are 5 problems. Make sure you have all of them.
- Write your solution below the problem. There is scratch paper at the back of the test.
- The test is double-sided. Make sure you are reading the backs of pages!
- Unless otherwise stated, show all your work for full credit.
- Unless otherwise stated, all answers should be exact, without rounding.
- You are allowed to use one 8.5 " $\times 11$ " sheet of notes, front and back.
- You can use a TI-30X IIS calculator. No other calculator is allowed.

TIPS:

- The number of points a question is worth is not correlated to its difficulty.
- Don't spend too much time on one problem if you haven't looked at the rest of the test.
- There is partial credit. Even if you can't fully solve a problem, explaining your progress might get you a significant number of points.
- Make sure your calculator is in radians!!!

1. For each of these questions, find the limit. If the limit does not exist, state whether the limit is ∞ or $-\infty$ if either applies; if neither applies write "DNE".
(a) (5 points) $\lim _{x \rightarrow 1} \frac{x^{2}+x-2}{x^{2}-1}$
(b) (5 points) $\lim _{x \rightarrow \infty} \frac{3 x^{2}+x+1}{7 x^{2}-x-8}$
(c) (5 points) $\lim _{x \rightarrow 0^{+}} \frac{\cos (\pi-x)}{x}$
2. (a) (5 points) Let $f(x)=\sin x+\cos x-\sqrt{x}-\frac{1}{x}$. Find $f^{\prime}(x)$.
(b) (5 points) Let $f(x)=\left(4 x^{2}+x\right) e^{x}$. Find $f^{\prime}(x)$.
(c) (5 points) Find the equation of the tangent line to the graph of $y=x^{3}-3 x-1$ at the point $(2,1)$.

Page 3
3. For this problem, you do not have to show your work.

Answer the following questions based on the graph of $f(x)$ shown below. If a limit does not exist, state whether that limit is ∞ or $-\infty$ if either applies; if neither applies write "DNE".

(a) (1 point) $\lim _{x \rightarrow 0^{-}} f(x)$
(g) (2 points) $\lim _{h \rightarrow 0} \frac{f(2+h)+1}{h}$
(b) (1 point) $\lim _{x \rightarrow 0^{+}} f(x)$
(c) (1 point) $\lim _{x \rightarrow 0} f(x)$
(h) (2 points) $\lim _{x \rightarrow 8} f^{\prime}(x)$
(d) (2 points) $\lim _{x \rightarrow 8} f(x)$
(e) (2 points) List all values of a where $f^{\prime}(a)=0$.
(i) (2 points) $\lim _{h \rightarrow 0^{+}} \frac{f(4+h)-2}{h}$ careful!)
(f) (2 points) List all values of a where $f^{\prime}(a)$ is undefined.
4. Let a be a number, and let

$$
f(x)= \begin{cases}3 a x-3 & \text { if } x<1 \\ a x^{2}+x & \text { if } x \geq 1\end{cases}
$$

(a) (4 points) Find all values of a which make $f(x)$ continuous at $x=1$. If there are none, explain why.
(b) (4 points) Find all values of a which make $f(x)$ differentiable at $x=1$. If there are none, explain why.
5. A scientist is studying a function $f(x)$. Through experiment, they have obtained a table of approximate values of $f(x)$ and an approximate graph of $f(x)$, shown below.

x	$f(x)$
0.0	2.3
0.5	3.0
1.0	4.0
1.5	5.2
2.0	6.7
2.5	8.4
3.0	10.4
3.5	12.6
4.0	15.1
4.5	17.8
5.0	20.8

Using a computer, the scientist also approximates the function $f^{\prime}(x)$. The results are shown below.

x	$f^{\prime}(x)$
0.0	1.2
0.5	1.7
1.0	2.2
1.5	2.7
2.0	3.2
2.5	3.7
3.0	4.2
3.5	4.7
4.0	5.2
4.5	5.7
5.0	6.2

(Problem 5 continued on next page.)
(a) (3 points) The scientist believes $f(x)$ is either a quadratic function (that is, of the form $f(x)=a x^{2}+b x+c$ where a, b, and c are constants) or an exponential function (that is, of the form $f(x)=a b^{x}$ where a and b are constants). Based on the given information, which do you think is correct? Explain your answer.
Hint: Think about what the derivative of a quadratic function looks like, and what the derivative of an exponential function looks like.
(b) (4 points) If you think $f(x)$ is a quadratic function $a x^{2}+b x+c$, find a, b, and c. If you think $f(x)$ is an exponential function $a b^{x}$, find a and b. Your values do not have to be exact. Remember to show your work or explain your answers.

Page 8

Page 10

