## Math 124B, Spring 2022 Midterm I

April 26, 2022

| Name            | KEY |  |
|-----------------|-----|--|
|                 |     |  |
|                 |     |  |
|                 |     |  |
| Student Number. |     |  |

## Instructions.

- These exams will be scanned. Please write your name and student number clearly for easy recognition.
- There are 5 questions. The exam is out of 50 points.
- $\bullet$  You are allowed to use one page of handwritten notes, 8.5 x 11, both sides ok.
- You can only use a Ti-30x IIS calculator. Unless otherwise stated, you have to give exact answers to questions.  $(\frac{2 \ln 3}{\pi} \text{ and } 1/3 \text{ are exact}, 0.699 \text{ and } 0.333 \text{ are approximations}$  for the those numbers.)
- Each problem clearly states if you must show work. In cases where work is requested, you may not get full credit for a right answer if your answer is not justified by your work.

| Question | points | Score |
|----------|--------|-------|
| 1        | 1213   |       |
| 2        | 12     |       |
| 3        | 11     |       |
| 4        | 8      |       |
| 5        | 6      |       |
| Total    | 50     |       |

1. (12 points) On this problem, place the answers you want graded in the provided boxes. If a box is left blank, you will get 0 points on that question. Give EXACT answers. Determine if the limit exists as a finite number or  $\pm \infty$  or DNE (does not exist). No work required. Some answers may involve unknown constants, as specified in each question.

(a) 
$$\lim_{h \to 5} \left( \frac{h-5}{h^2 - 25} \right) = \boxed{\frac{1}{10}}$$

(b) 
$$\lim_{h \to \infty} \left( \frac{h-5}{h^2 - 25} \right) = \bigcirc$$

(c) If 
$$A$$
 and  $B$  are non-zero constants,
$$\lim_{t \to \frac{\pi}{2}} \left( \frac{\sqrt{\sin^2 t + A \cos^2 t} - \sin t}{B \cos^2 t} \right) = \boxed{\frac{A}{2}}$$

(i)

(ii)

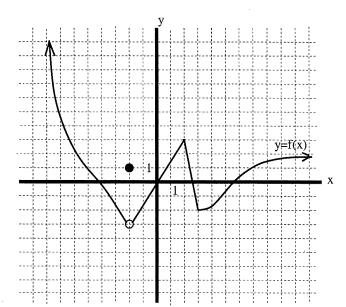
(d) Consider the multipart function 
$$f(x) = \begin{cases} 3x^2 & \text{if } x \le 0 \\ -4x^2 + 1 & \text{if } x > 0 \end{cases}$$



$$\lim_{h \to 0^-} f'(h) = \bigcirc$$



$$\lim_{h \to 0^+} f'(h) = \bigcirc$$


(iii) Is 
$$f(x)$$
 differentiable at  $x = 0$ ? Explain. No

lim  $f(h) - f(0) = \lim_{h \to 0^+} \frac{-4h^2 + 1}{h} = 0$ 

lim  $f(h) - f(0) = \lim_{h \to 0^+} \frac{-3h^2 - 1}{h} = 0$ 

Since right had not equal

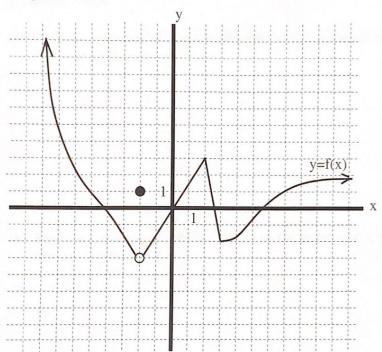
2. (12 points) The graph of a function y = f(x) is pictured. The x and y axis are indicated and the dotted lines yield a grid with units of 1 in each direction. No work required on this part. We will only grade your BOXED final answers. If you are asked to calculate a limit, determine if the limit exists as a finite number or  $\pm \infty$  or DNE (does not exist). No work required on this problem.

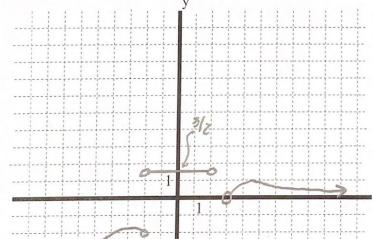


(a) 
$$\lim_{x \to -2} f(x) = \boxed{-3}$$

(b) 
$$\lim_{x \to 0} \frac{f(x)}{x} = \frac{3}{2}$$

(c) Is 
$$y = \cos(\pi/x) \cdot f(x)$$
 is continuous at  $x = -2$ ?


Yes. 
$$|y(-2)-cos(-\frac{\pi}{2})-f(-2)|$$
  
= 0.1=0  
2)  $|x| = 0 \cdot (-3) = 0$   
 $|x| = 0$ 






(e) Circle the LARGEST number in this list:

2. (continued). The graph of f(x) is reproduced here. Sketch the graph of y = f'(x) on the grid below:





- A: Must go to -00 as x>-00 and always negative
- (B): constant y= == ==
- 6: constant y=-5
- D: starts close to 0
  at x=3, then always
  positive with look
  maxas >0 as
  x > 0.

3. (22 points) Suppose 
$$d(x) = \frac{1}{1+x^2}$$
.



$$\begin{array}{ll}
(T, Lim@f: y = (slee)(x - (-1)) + 1 & = x + 1 \\
(3) y = -2(-1)(x+1) + 1 & = x + 1
\end{array}$$

$$\begin{array}{ll}
(3) y = -2(-1)(x+1) + 1 & = x + 1
\end{array}$$

(b) Find the x-coordinates of ALL points on the graph of y = d(x) where the tangent line has x-intercept 2.

· Let (a, d(a)) be pt on graph where T. Line has x-interest 2.

· Tiline ega OQ:

each value

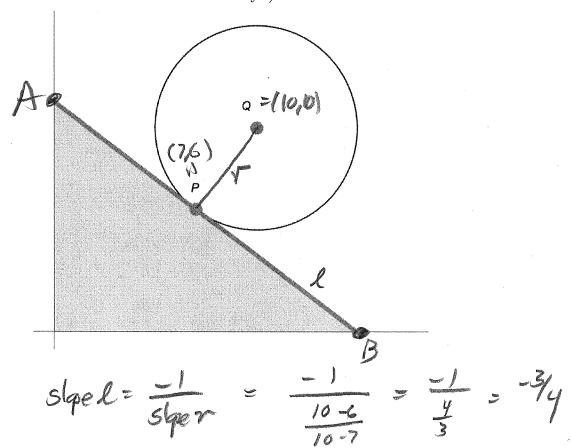
4. (8 points) An object moves along the x-axis and its location at time  $t \geq 0$  seconds is given by the function

$$x(t) = 10 - \frac{50t}{9 + t^2}$$

Where is direct located whe and units on the axis are "meters". Assume  $t \geq 0$ . On the time interval [0, 10], determine ALL times when the object is moving to the right. You must show work tre velocity 1302 and explain how you got your answer.

$$\left(\frac{x'(t)}{x'(t)}\right) = \left(\frac{sot}{q+t^2}\right)' = -\left(\frac{sot}{q+t^2}\right)'$$

$$= -\left(\frac{(9+t^2)^{50} - 50t \cdot 2t}{(9+t^2)^2}\right)$$


$$= -\left(\frac{(9+t^2)^2}{(9+t^2)^2}\right)$$

Now, x'(M=0 (=) t=±3. But t>0, so x'(f)=0=>t=3

$$\Rightarrow \chi(3) = 10 - \frac{50.3}{9+3^2} = 10 - \frac{150}{18}$$

 $3) \times (3) = 10 - \frac{50.3}{9+3^2} = 10 - \frac{150}{18}$ , diet located  $G = \frac{15}{7}$  Wen velocity is  $\frac{15}{7}$  Wen.

5. (6 points) In the picture below is a circle of radius 5 centered at Q=(10,10). We have drawn the line  $\ell$  tangent to the circle through the point P=(7,6). The line  $\ell$ , the positive x-axis and the postive y-axis determine a triangular region, as pictured. What is the area of the triangular region? (You must explain how you arrived at your answer. No credit for answer only.)



(D) A: y-intercept: plug x=0 into egn x:
y=3/4(0-7)+6=2+6=21+24

(Ip) < B: x-intercept ! plug y=0, solverfor x in x! = -3/4(x-7) \_ (x-7) + 6 =) -6= -3/4(x-7) | 8= x-7=>|x=15|

(1) (1) Area = 2. 45. 15 = 675 = 84.375

## SCRATCH PAPER-DO NOT REMOVE