Name

Student Number

Instructions.

- These exams will be scanned. Please write your name and student number clearly for easy recognition.
- There are 5 questions. The exam is out of 50 points.
- You are allowed to use one page of handwritten notes, 8.5×11, both sides ok.
- You can only use a Ti-30x IIS calculator. Unless otherwise stated, you have to give exact answers to questions. $\left(\frac{2 \ln 3}{\pi}\right.$ and $1 / 3$ are exact, 0.699 and 0.333 are approximations for the those numbers.)
- Each problem clearly states if you must show work. In cases where work is requested, you may not get full credit for a right answer if your answer is not justified by your work.

Question	points	Score
1	13	
2	12	
3	11	
4	8	
5	6	
Total	50	

1. (13 points) On this problem, place the answers you want graded in the provided boxes. If a box is left blank, you will get 0 points on that question. Give EXACT answers. Determine if the limit exists as a finite number or $\pm \infty$ or DNE (does not exist). You only need to explain your answer in part (d)(iii); no work required for other parts. Some answers may involve unknown constants, as specified in each question.
(a) $\lim _{h \rightarrow 5}\left(\frac{h-5}{h^{2}-25}\right)=\square$
(b) $\lim _{h \rightarrow \infty}\left(\frac{h-5}{h^{2}-25}\right)=\square$
(c) If A and B are non-zero constants,

$$
\lim _{t \rightarrow \frac{\pi}{2}}\left(\frac{\sqrt{\sin ^{2} t+A \cos ^{2} t}-\sin t}{B \cos ^{2} t}\right)=\square
$$

(d) Consider the multipart function $f(x)= \begin{cases}3 x^{2} & \text { if } x \leq 0 \\ -4 x^{2}+1 & \text { if } x>0\end{cases}$
(i)

$$
\lim _{h \rightarrow 0^{-}} f^{\prime}(h)=\square
$$

(ii)

$$
\lim _{h \rightarrow 0^{+}} f^{\prime}(h)=\square
$$

(iii) Is $f(x)$ differentiable at $x=0$? Explain.
2. (12 points) The graph of a function $y=f(x)$ is pictured. The x and y axis are indicated and the dotted lines yield a grid with units of 1 in each direction. We will only grade your BOXED final answers. If you are asked to calculate a limit, determine if the limit exists as a finite number or $\pm \infty$ or DNE (does not exist). No work required on this problem.

(a) $\lim _{x \rightarrow-2} f(x)=\square$
(b) $\lim _{x \rightarrow 0} \frac{f(x)}{x}=\square$
(c) Is $y=\cos (\pi / x) \cdot f(x)$ is continuous at $x=-2$? \square
(d) What is the slope of the tangent line to the curve $y=\frac{f(x)}{e^{x}}$ at $x=-1$?
\square
(e) Circle the LARGEST number in this list:

$$
f(0) \quad f^{\prime}(0) \quad f^{\prime \prime}(0)
$$

2. (continued). The graph of $f(x)$ is reproduced here. Sketch the graph of $y=f^{\prime}(x)$ on the grid below:

3. (11 points) Let $d(x)=\frac{1}{1+x^{2}}$, then $d^{\prime}(x)=\frac{-2 x}{\left(1+x^{2}\right)^{2}}$. You must show work for parts (a) and (b) below.
(a) Find the equation of the tangent line to the graph of $y=d(x)$ at the point $P=(-1,1 / 2)$.
(b) Find the x-coordinates of ALL points on the graph of $y=d(x)$ where the tangent line has x-intercept 2 .
4. (8 points) An object moves along the x-axis and its location at time $t \geq 0$ seconds is given by the function

$$
x(t)=10-\frac{50 t}{9+t^{2}}
$$

and units on the axis are "meters". Assuming $t \geq 0$, where is the object located the first time the velocity is zero?
5. (6 points) In the picture below is a circle of radius 5 centered at $Q=(10,10)$. We have drawn the line ℓ tangent to the circle through the point $P=(7,6)$. The line ℓ, the positive x-axis and the postive y-axis determine a triangular region, as pictured. What is the area of the triangular region? (You must explain how you arrived at your answer. No credit for answer only.)

