Math 124D - Midterm I Autumn 2021 Solutions

Name: \qquad

Student ID \#: \qquad

Question	Points	Score
1	12	
2	12	
3	12	
4	5	
5	6	
6	8	
Total:	55	

1. (12 points) Use the graph of the function $y=f(x)$ shown below to answer (a) - (f). For limit questions, your answer must be one of DNE, $\infty,-\infty$ or a number.

(a) Find $\lim _{x \rightarrow 2^{+}} f(x)$.

Solution: -1

(b) At what values of x is the derivative of f undefined?

Solution: 2, 4, 5
(c) List the intervals of values of x for which $f^{\prime}(x)>0$.

Solution: $(0,1)$ and $(2,4)$
(d) Find the derivative of $f(x)$ at $x=3$.

Solution: $f^{\prime}(3)=\frac{3-(-1)}{4-2}=2$
(e) Find the derivative of $\frac{1}{f(x)}$ at $x=3$.

Solution: $\left(\frac{1}{f(x)}\right)^{\prime}=\frac{f(x) \cdot 0-1 \cdot f^{\prime}(x)}{(f(x))^{2}}=\frac{-f^{\prime}(x)}{(f(x))^{2}} \Rightarrow \frac{-f^{\prime}(3)}{(f(3))^{2}}=\frac{-2}{1^{2}}=-2$
(f) What is $\lim _{x \rightarrow 1} \frac{1}{f(x)}$?

Solution: $\lim _{x \rightarrow 1} f(x)=0$ and $\frac{1}{f(x)} \leq 0$ for x near $1 \Rightarrow \lim _{x \rightarrow 1} f(x)=-\infty$
2. (12 points) A train leaves Station A at $t=0$ along tracks that run straight east-west. Its distance east (in miles) of Station A t hours after departure is given by

$$
d(t)=80 t^{2}-50 t^{4} .
$$

Make sure to include appropriate units in your answers.
(a) What is the average velocity of the train over the first hour of its trip?

Solution:

$$
\begin{aligned}
\frac{d(1)-d(0)}{1-0} & =\frac{\left(80 \cdot(1)^{2}-50 \cdot(1)^{4}\right)-\left(80 \cdot 0^{2}-50 \cdot 0^{4}\right)}{1-0}=\frac{80-50}{1} \\
& =30 \text { miles per hour }
\end{aligned}
$$

(b) Find a formula for the instantaneous velocity of the train at time t.

Solution:

$$
\begin{aligned}
v(t)=d^{\prime}(t) & =80 \cdot\left(t^{2}\right)^{\prime}-50 \cdot\left(t^{4}\right)^{\prime}=80 \cdot(2 t)-50 \cdot\left(4 t^{3}\right) \\
& =160 t-200 t^{3} \text { miles } / \text { hour }
\end{aligned}
$$

(c) What is the acceleration of the train half an hour after departure?

Solution:

$$
\begin{aligned}
& a(t)=v^{\prime}(t)=160(t)^{\prime}-200\left(t^{3}\right)^{\prime}=160 \cdot 1-200 \cdot\left(3 t^{2}\right) \\
& \Rightarrow a(1 / 2)=160-200\left(3 / 2^{2}\right)=160-50 \cdot 3=10 \mathrm{miles} / \text { hour }^{2}
\end{aligned}
$$

(d) Does the train ever go backwards (westward) after starting its trip? If so, when?

Solution: Want to know if/when $v(t)<0$.
We know $v(t)=160 t-200 t^{3}=t\left(160-200 t^{2}\right)$. Know $t>0$.
We find that $160-200 t^{2} \geq 0 \Leftrightarrow \frac{4}{5}=\frac{160}{200} \geq t^{2}$.
The train is going backwards after $t=\frac{2}{\sqrt{5}} \approx 0.894427$ hours
3. (12 points) Find the following limits. Your answer must be one of DNE, $\infty,-\infty$ or a number.
(a) $\lim _{x \rightarrow 0} \sin \left(\frac{x}{x+1}\right)$

$$
\text { Solution: }=\sin \left(\frac{0}{0+1}\right)=\sin (0)=0
$$

(b) $\lim _{x \rightarrow 0} \frac{2 x+1}{x^{3}}$

Solution: $\lim _{x \rightarrow 0} 2 x+1=1$ and $\lim _{x \rightarrow 0} x^{3}=0$
For small $x>0, \frac{2 x+1}{x^{3}}>0$ so $\lim _{x \rightarrow 0^{+}} \frac{2 x+1}{x^{3}}=\infty$
For small $x<0, \frac{2 x+1}{x^{3}}<0$ so $\lim _{x \rightarrow 0^{-}} \frac{2 x+1}{x^{3}}=-\infty$
Therefore $\lim _{x \rightarrow 0} \frac{2 x+1}{x^{3}}$ DNE
(c) $\lim _{x \rightarrow \infty} \frac{\sqrt{4 x^{2}+1}}{5 x+3}$

Solution:

$$
\lim _{x \rightarrow \infty} \frac{\sqrt{4 x^{2}+1}}{5 x+3} \cdot \frac{1 / x}{1 / x}=\lim _{x \rightarrow \infty} \frac{\sqrt{4 x^{2}+1} \cdot \sqrt{1 / x^{2}}}{(5 x+3) \cdot(1 / x)}=\lim _{x \rightarrow \infty} \frac{\sqrt{4+1 / x^{2}}}{5+3 / x}=\frac{\sqrt{4}}{5}=\frac{2}{5}
$$

(d) $\lim _{h \rightarrow 0} \frac{2 e^{h}-2}{h}$

Solution: $\lim _{h \rightarrow 0} \frac{2 e^{h}-2}{h}=f^{\prime}(0)$ where $f(x)=2 e^{x}$.

$$
f^{\prime}(x)=\left(2 e^{x}\right)^{\prime}=2 e^{x} \Rightarrow \lim _{h \rightarrow 0} \frac{2 e^{h}-2}{h}=f^{\prime}(0)=2 e^{0}=2
$$

4. (5 points) Find the equation of the tangent line to the curve $y=x \sin (x)$ at $x=\pi$.

Solution: For $f(x)=x \sin (x)$, we have $f(\pi)=\pi \sin (\pi)=0$, so the point on the graph is $(\pi, 0)$.
Using the product rule, $y^{\prime}=(x)^{\prime} \cdot \sin (x)+x \cdot(\sin (x))^{\prime}=1 \cdot \sin (x)+x \cdot \cos (x)$.

Slope of the tangent line $y^{\prime}(\pi)=\sin (\pi)+\pi \cos (\pi)=0+\pi \cdot(-1)=-\pi$.

Point-slop form of the tangent line: $(y-0)=f^{\prime}(\pi)(x-\pi) \Rightarrow y=-\pi(x-\pi)$.
5. (6 points) Use the definition of the limit to find $f^{\prime}(1)$ where $f(x)=\sqrt{2 x+1}$. (You may not use any derivative rules.)

Solution: By definition,

$$
\begin{aligned}
f^{\prime}(1) & =\lim _{h \rightarrow 0} \frac{f(1+h)-f(1)}{h}=\lim _{h \rightarrow 0} \frac{\sqrt{2(1+h)+1}-\sqrt{2+1}}{h}=\lim _{h \rightarrow 0} \frac{\sqrt{2 h+3}-\sqrt{3}}{h} \\
& =\lim _{h \rightarrow 0} \frac{\sqrt{2 h+3}-\sqrt{3}}{h} \cdot \frac{\sqrt{2 h+3}+\sqrt{3}}{\sqrt{2 h+3}+\sqrt{3}}=\lim _{h \rightarrow 0} \frac{2 h+3-3}{h(\sqrt{2 h+3}+\sqrt{3})}=\lim _{h \rightarrow 0} \frac{2}{(\sqrt{2 h+3}+\sqrt{3})} \\
& =\frac{2}{(\sqrt{3}+\sqrt{3})}=\frac{1}{\sqrt{3}} \approx 0.57735
\end{aligned}
$$

6. (8 points) Find the x-values of all points on the curve $y=\left(1+\frac{1}{x}\right) e^{x}$ at which the tangent line is horizontal.

Solution: For $f(x)=\left(1+\frac{1}{x}\right) e^{x}$, using the product rule we find that

$$
\begin{aligned}
f^{\prime}(x) & =\left(1+x^{-1}\right)^{\prime} e^{x}+\left(1+x^{-1}\right)\left(e^{x}\right)^{\prime} \\
& =\left(0-x^{-2}\right) e^{x}+\left(1+x^{-1}\right) e^{x} \\
& =\left(1+x^{-1}-x^{-2}\right) e^{x} \\
& =\frac{x^{2}+x-1}{x^{2}} e^{x}
\end{aligned}
$$

The line tangent to the curve is horizontal when it has slope zero, i.e. $f^{\prime}(x)=0$. We need to find all solutions of $\frac{x^{2}+x-1}{x^{2}} \cdot e^{x}=0$.
Since e^{x} is always non-zero, we see that $f^{\prime}(x)=0$ only when $x^{2}+x-1=0$. Using the quadratic formula, we find that this happens for

$$
x=\frac{-1 \pm \sqrt{1^{2}-4(1)(-1)}}{2}=\frac{-1 \pm \sqrt{5}}{2} \approx-1.61803,0.61803
$$

