Your Name

Your Signature
\square

Student ID \#

- Turn off all cell phones, pagers, radios, mp3 players, and other similar devices.
- Please write your name at the top of every page.
- This exam is closed book. You may use one $8.5^{\prime \prime} \times 11^{\prime \prime}$ sheet of handwritten notes (both sides OK). Do not share notes. No photocopied materials are allowed.
- You can use only a Texas Instruments TI-30X IIS calculator.
- In order to receive credit, you must show all of your work. If you do not indicate the way in which you solved a problem, you may get little or no credit for it, even if your answer is correct.
- Place a box around your answer to each question.
- The pages have problems on both sides.
- If you need more room, use the blank last page and indicate that you have done so.
- Raise your hand if you have a question.
- This exam has 5 pages, plus this cover sheet. Please make sure that your exam is complete.

Question	Points	Score
1	12	
2	7	
3	7	
4	8	
5	8	
6	8	
Total	50	

1. Determine if the following limits exist. If they exist, compute them. Justify your answers.
(a) (4 points) $\lim _{x \rightarrow 2} \frac{x^{2}-4}{2 x^{2}-3 x-2}$
(b) (4 points) $\lim _{h \rightarrow 0}\left(\frac{2}{h^{3}+2 h}-\frac{1}{h}\right)$
(c) (4 points) $\lim _{x \rightarrow \infty}\left(\sqrt{4 x^{2}-3 x}-2 x\right)$
2. (7 points) Use the limit definition of the derivative on this problem. Find the slope of the tangent line to the curve $y=\frac{1}{5-2 x}$ at the point $(2,1)$.
3. (7 points) Calculate the equation of the tangent line to $g(x)=\frac{1+x}{1+x+x^{2}} \quad$ at $x=2$.
4. (8 points) Let $H(x)= \begin{cases}(x-1)^{2} & \text { if } x<0 ; \\ e^{x^{2}} & \text { if } x \geq 0 .\end{cases}$

Is $H(x)$ a continuous function? Use limits to give a careful justification of your answer.
5. (8 points) A particle is travelling in a straight line. Its position is given by $x=\left(t^{2}-7\right) e^{t}$, where x is in feet and t is in seconds. Find all times when the acceleration of the particle is zero.
6. (8 points) Find two different points on the curve $y=\frac{x}{x-1}$ at which the tangent line passes through the point $(-14,2)$.

This page is for extra work.

