Solutions to Math 124 Winter 2024 Final
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2. (a) f'(z) = cos(v/3z) - - 3cos(3x).
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4. (a) First: 824+ 13 =44+1=5. Pluginz =8 and y = 1 in
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to get ¥’ = —1/2 so the tangent line is y — 1 = —%($ —8).

(b) Pluginz=8,y=1,y =—-1/21in
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to get y” = 5/48 so the graph is concave up.



5. (a) From 2 +1 =y =t + 1 we get t; = +t, since we want them distinct, ¢; = —t5. From
B—ti+l=ax=1t—ts+1=(—t;1)°+t1+1 we get t{ —t; = —t3+t; 500 = t]—t; = t1 (5 —1)
so t; = 1. The point of self-intersection is

(x(1),y(1)) = (x(=1),y(=1)) = (1,2).

(b) The derivative is

=4z T a2 7
dz & 3t2 -1

At t =1, the slope is 1 and the tangent lineis y — 2 =2 — 1.
At t = —1, the slope is —1 and the tangent line is y — 2 = —(x — 1).

(c) When 0 = 2 = 3¢> — 1 we have t = £1/V/3:
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6. Given % = —0.25 we want Z—Z{. The volume is V =5 - %

Using similar triangles
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so z = 10y/3 and V = 25y2/3. So T
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When y = 2 we get % = —0.0075 meters per minute.

7. With the center at the origin and the righmost point of the
platform at (z,y), the area is A = 4zy with the constraint
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we get © = 3v2 and A = 12 squared feet.

8. (a) The only candidate for the vertical asymptote is z = 0. We check:
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Checking the limits:
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so y = 1 is the horizontal asymptote (on both sides).

From
) = Qr+1)- 22— (2*+2+1) 22 _rH+2
x4 x3
the only critical number is x = —2. Note that = 0 is not a critical number because it is

not in the domain of the function.
Decreasing on (—oo, —2) and (0,00). Increasing on (—2,0). At (—2,3/4) it has a local
minimum.

From
3 —(r+2)-322 2246
f,/(x) == — IG —= I4 = 0
we get x = —3. The graph is concave up on (—3,0) and (0, 00), concave down on (—o0, —3)

and has an inflection point at (—3,7/9).



