Solutions to Math 124 Winter 2024 Final

1. (a) $\lim _{x \rightarrow 1}\left(\frac{1}{x-1}+\frac{1}{x^{2}-3 x+2}\right)=\lim _{x \rightarrow 1}\left(\frac{1}{x-1}+\frac{1}{(x-1)(x-2)}=\lim _{x \rightarrow 1} \frac{x-1}{(x-2)(x-1)}=\lim _{x \rightarrow 1} \frac{1}{x-2}=\right.$ -1
(b) $\lim _{y \rightarrow 4^{+}} \frac{\sqrt{y}}{(y-4)^{6}}=\infty$ and $\lim _{y \rightarrow 4^{-}} \frac{\sqrt{y}}{(y-4)^{6}}=\infty$ so $\lim _{y \rightarrow 4} \frac{\sqrt{y}}{(y-4)^{6}}=\infty$
(c) $\lim _{x \rightarrow 1} \frac{\ln x}{\tan (\pi x)}={ }^{\mathrm{LH}} \lim _{x \rightarrow 1} \frac{\frac{1}{x}}{\pi \sec ^{2}(\pi x)}=\frac{1}{\pi}$
2. (a) $f^{\prime}(x)=\cos (\sqrt{3 x}) \cdot \frac{\sqrt{3}}{2 \sqrt{x}}+\frac{1}{2 \sqrt{\sin (3 x)}} \cdot 3 \cos (3 x)$.
(b) $f^{\prime}(x)=\frac{\left(\frac{3 \arcsin (7 x)}{1+3 x}+\frac{7 \ln (1+3 x)}{\sqrt{1-49 x^{2}}}\right)\left(e^{2 x}+x\right)+\ln (1+3 x)(\arcsin (7 x))\left(2 e^{2 x}+1\right)}{\left(e^{2 x}+x\right)^{2}}$
(c)

$$
\begin{gathered}
\ln (g(t))=\ln \left((\cos (a t))^{\sqrt{b t+c}}\right)=\sqrt{b t+c} \cdot \ln (\cos (a t)) \\
\frac{g^{\prime}(t)}{g(t)}=\frac{b \cdot \ln (\cos (a t))}{2 \sqrt{b t+c}}+\sqrt{b t+c} \cdot \frac{-a \sin (a t)}{\cos (a t)} \\
g^{\prime}(t)=\left(\frac{b \cdot \ln (\cos (a t))}{2 \sqrt{b t+c}}-a \tan (a t) \sqrt{b t+c}\right) \cdot(\cos (a t))^{\sqrt{b t+c}}
\end{gathered}
$$

3. (a) $\lim _{x \rightarrow-1} f^{\prime}(x)$ DNE
(g) $x=-1,0,3$
(b) $f^{\prime}(0)=4$
(h) $x=-2,1.6$
(c) $\lim _{x \rightarrow 1^{-}} f^{\prime \prime}(x)=-\infty$
(i) $x=-1,4.4$
(d) $\lim _{h \rightarrow 0} \frac{f(h)-f(0)}{h}=4$
(e) $\lim _{x \rightarrow 3} \frac{f^{\prime}(x)+2}{x-3}=0$
(f) $g^{\prime}(-2)=f^{\prime}\left(f^{\prime}(-2)\right) \cdot f^{\prime \prime}(-2)=-8$
4. (a) First: $8^{1 / 3}+1^{1 / 3}=4+1=5$. Plug in $x=8$ and $y=1$ in

$$
\frac{2}{3} x^{-1 / 3}+\frac{2}{3} y^{-1 / 3} y^{\prime}=0
$$

to get $y^{\prime}=-1 / 2$ so the tangent line is $y-1=-\frac{1}{2}(x-8)$.
(b) Plug in $x=8, y=1, y^{\prime}=-1 / 2$ in

$$
-\frac{2}{9} x^{-4 / 3}-\frac{2}{9} y^{-4 / 3} y^{\prime} y^{\prime}+\frac{2}{3} y^{-1 / 3} y^{\prime \prime}=0
$$

to get $y^{\prime \prime}=5 / 48$ so the graph is concave up.
5. (a) From $t_{1}^{2}+1=y=t_{2}^{2}+1$ we get $t_{1}= \pm t_{2}$ since we want them distinct, $t_{1}=-t_{2}$. From $t_{1}^{3}-t_{1}+1=x=t_{2}^{3}-t_{2}+1=\left(-t_{1}\right)^{3}+t_{1}+1$ we get $t_{1}^{3}-t_{1}=-t_{1}^{3}+t_{1}$ so $0=t_{1}^{3}-t_{1}=t_{1}\left(t_{1}^{2}-1\right)$ so $t_{1}= \pm 1$. The point of self-intersection is

$$
(x(1), y(1))=(x(-1), y(-1))=(1,2) .
$$

(b) The derivative is

$$
\frac{d y}{d x}=\frac{\frac{d y}{d t}}{\frac{d x}{d t}}=\frac{2 t}{3 t^{2}-1}
$$

At $t=1$, the slope is 1 and the tangent line is $y-2=x-1$.
At $t=-1$, the slope is -1 and the tangent line is $y-2=-(x-1)$.
(c) When $0=\frac{d x}{d t}=3 t^{2}-1$ we have $t= \pm 1 / \sqrt{3}$:

$$
\left(x\left(\frac{1}{\sqrt{3}}\right), y\left(\frac{1}{\sqrt{3}}\right)\right)=\left(-\frac{2 \sqrt{3}}{9}+1, \frac{4}{3}\right) \quad \text { and }\left(x\left(-\frac{1}{\sqrt{3}}\right), y\left(-\frac{1}{\sqrt{3}}\right)\right)=\left(\frac{2 \sqrt{3}}{9}+1, \frac{4}{3}\right)
$$

6. Given $\frac{d V}{d t}=-0.25$ we want $\frac{d y}{d t}$. The volume is $V=5 \cdot \frac{x y}{2}$.

Using similar triangles

$$
\frac{10}{3}=\frac{x}{y}
$$

so $x=10 y / 3$ and $V=25 y^{2} / 3$. So

$$
\frac{d V}{d t}=\frac{50 y}{3} \cdot \frac{d y}{d t} .
$$

When $y=2$ we get $\frac{d y}{d t}=-0.0075$ meters per minute.
7. With the center at the origin and the righmost point of the platform at (x, y), the area is $A=4 x y$ with the constraint

$$
\frac{x^{2}}{9}+\frac{y^{2}}{4}=1
$$

so we want to maximize

$$
A(x)=4 x \cdot 2 \sqrt{1-\frac{x^{2}}{9}}
$$

From

$$
A^{\prime}(x)=8 \sqrt{1-\frac{x^{2}}{9}}+8 x \cdot \frac{-2 x / 9}{\sqrt{1-\frac{x^{2}}{9}}}=0
$$

we get $x=3 \sqrt{2}$ and $A=12$ squared feet.
8. (a) The only candidate for the vertical asymptote is $x=0$. We check:

$$
\lim _{x \rightarrow 0} \frac{x^{2}+x+1}{x^{2}}=\infty
$$

(b) Checking the limits:

$$
\lim _{x \rightarrow \infty} \frac{x^{2}+x+1}{x^{2}}=1
$$

and

$$
\lim _{x \rightarrow-\infty} \frac{x^{2}+x+1}{x^{2}}=1
$$

so $y=1$ is the horizontal asymptote (on both sides).
(c) From

$$
f^{\prime}(x)=\frac{(2 x+1) \cdot x^{2}-\left(x^{2}+x+1\right) \cdot 2 x}{x^{4}}=-\frac{x+2}{x^{3}}
$$

the only critical number is $x=-2$. Note that $x=0$ is not a critical number because it is not in the domain of the function.
(d) Decreasing on $(-\infty,-2)$ and $(0, \infty)$. Increasing on $(-2,0)$. At $(-2,3 / 4)$ it has a local minimum.
(e) From

$$
f^{\prime \prime}(x)=-\frac{x^{3}-(x+2) \cdot 3 x^{2}}{x^{6}}=\frac{2 x+6}{x^{4}}=0
$$

we get $x=-3$. The graph is concave up on $(-3,0)$ and $(0, \infty)$, concave down on $(-\infty,-3)$ and has an inflection point at $(-3,7 / 9)$.

