Your Name
\square
Student ID \#
\square
Professor's Name

Your Signature

Quiz Section

TA's Name

READ THE INSTRUCTIONS!

- These exams will be scanned. Write your name, student number and quiz section clearly.
- Turn off and stow away all cell phones, smart watches, mp3 players, and other similar devices. No earbuds/headphones allowed during the exam.
- This exam is closed book. You may use one $8.5^{\prime \prime} \times 11^{\prime \prime}$ sheet of handwritten notes (both sides OK). Do not share notes. No photocopied or printed materials are allowed.
- Give your answers in exact form unless instructed otherwise. For example, $\frac{\pi}{3}$ or $5 \sqrt{3}$ are exact numbers while 1.047 and 8.66 are decimal approximations for the same numbers.
- You can only use a Texas Instruments TI-30X IIS calculator.
- In order to receive credit, you must show all of your work. If you do not indicate the way in which you solved a problem, you may get little or no credit for it, even if your answer is correct.
- This exam has 11 pages plus this cover page with 8 questions. Please make sure that your exam is complete.

Problem	Score	Problem	Score	Problem	Score
$1(12 \mathrm{pts})$		$4(12 \mathrm{pts})$		$7(12 \mathrm{pts})$	
$2(12 \mathrm{pts})$		$5(12 \mathrm{pts})$		$8(16 \mathrm{pts})$	
$3(12 \mathrm{pts})$		$6(12 \mathrm{pts})$		Total	

1. (12 total points) Compute each of the following limits. If there is no finite limit, write $\infty,-\infty$, or DNE (does not exist), whichever applies.
(a) (4 points) $\lim _{x \rightarrow 0} \frac{x \sin x}{1-\cos x}$
(b) (4 points) $\lim _{x \rightarrow 1} \frac{x^{2}-3 x+2}{x-1}$
(c) (4 points) $\lim _{x \rightarrow \infty} \cos \left(\frac{\ln (\ln x)}{\ln x}\right)$
2. (12 total points) Find the derivatives of the following functions. You do not have to simplify.
(a) (4 points) $y=(1+\sqrt{t})^{20}(1+t)^{23}$.
(b) (4 points) $y=\left(\sin x+\tan ^{3} x\right)^{\frac{1}{3}}$.
(c) (4 points) $y=\left(1+\cos x+e^{x}\right)^{\sin x}$.
3. (12 points) The function $f(x)$ is differentiable everywhere except at $x=-3$. Answer the questions based on the graph of $y=f^{\prime}(x)$, the derivative of $f(x)$, shown below.

$$
y=f^{\prime}(x)
$$

(a) $\lim _{x \rightarrow-3^{+}} f^{\prime}(x)=$
(b) $f^{\prime \prime}(-7)=$
(c) List all values of x where the graph of $y=f(x)$ has a local maximum.
(d) List all intervals where the graph of $y=f(x)$ is concave up.
(e) List all x values where the graph of $y=f(x)$ has a point of inflection.
(f) If $f(-2)=0$, what is $f(-0.5)$?
4. (12 points) Consider the curve defined by the implicit function $x^{3}-4 x y+y^{2}=0$ whose graph is shown on the right.
(a) Find all points (a, b) on the curve where the tangent line is vertical.

(b) Check that the point $(3,3)$ lies on the curve. Use a linear approximation to estimate the x-coordinate of a point on the curve with y-coordinate equal to 2.95 .
5. (12 points) A particle is moving in the plane and has parametric equations

$$
x(t)=t \cos (\pi t) \quad y(t)=t \sin (\pi t)
$$

where $t \geq 0$. The path of the particle during the time interval $0 \leq t \leq 2$ is plotted on the right.

(a) What is the horizontal velocity of the particle at time t ?
(b) What is the vertical velocity of the particle at time t ?
(c) What is the equation of the tangent line to the path when the particle crosses the negative y-axis?
(d) If $s(t)$ is the speed of the particle at time t,

$$
\lim _{t \rightarrow \infty} s(t)=
$$

6. (12 points) The top of a ladder slides down a vertical wall at a rate of 0.25 meters per second. At the moment when the bottom of the ladder is 5 meters from the wall, it slides away from the wall at a rate of 0.6 meters per second. How long is the ladder?
7. (12 points) A lump of clay of volume 1000 cubic centimeters is used to make a cube and a sphere. Find the dimensions of the cube and the sphere that would give the maximum and the minimum total surface areas.
Recall that the volume of a sphere of radius r is given by $V=\frac{4}{3} \pi r^{3}$ and its surface area is given by $A=4 \pi r^{2}$
8. (16 points) Let $f(x)$ be the function

$$
y=f(x)=2-\frac{6}{x}+\frac{6}{x^{2}}
$$

on the domain of all non-zero real numbers.
(a) Find all intervals over which $f(x)$ is decreasing.
(b) Find all intervals over which $f(x)$ is concave down.
8. (continued) Recall the function $y=f(x)=2-\frac{6}{x}+\frac{6}{x^{2}}$
(c) Calculate the following limits.
(i) $\lim _{x \rightarrow \infty} f(x)$
(ii) $\lim _{x \rightarrow-\infty} f(x)$
(iii) $\lim _{x \rightarrow 0^{+}} f(x)$
(iv) $\lim _{x \rightarrow 0^{-}} f(x)$
(d) Sketch the graph $f(x)$ using the grid below. Clearly label the (x, y) coordinates of all critical points and all points of inflection.

This page is blank. If you continued a question here, make a note on the question page so we check $i t$.

This page is blank. If you continued a question here, make a note on the question page so we check $i t$.

