Answers to Math 124 Spring 2022 Final

1. (a) Factoring

$$
\lim _{\theta \rightarrow \pi / 2} \frac{\sin ^{2} \theta-5 \sin \theta+4}{\sin ^{2} \theta-1}=\lim _{\theta \rightarrow \pi / 2} \frac{(\sin \theta-1)(\sin \theta-4)}{(\sin \theta-1)(\sin \theta+1)}=\lim _{\theta \rightarrow \pi / 2} \frac{\sin \theta-4}{\sin \theta+1}=-\frac{3}{2}
$$

L'Hospital's Rule

$$
\lim _{\theta \rightarrow \pi / 2} \frac{\sin ^{2} \theta-5 \sin \theta+4}{\sin ^{2} \theta-1}={ }^{\mathrm{LH}} \lim _{\theta \rightarrow \pi / 2} \frac{2 \sin \theta \cos \theta-5 \cos \theta}{2 \sin \theta \cos \theta}=\lim _{\theta \rightarrow \pi / 2} \frac{2 \sin \theta-5}{2 \sin \theta}=-\frac{3}{2}
$$

(b) $\lim _{x \rightarrow 3}\left(\frac{1}{\sqrt{x+1}}-\frac{1}{2}\right)=\frac{1}{2}-\frac{1}{2}=0$.
(c) First,

$$
\lim _{x \rightarrow 0^{-}} \frac{\sin 3 x}{x}={ }^{\mathrm{LH}} \lim _{x \rightarrow 0^{-}} \frac{3 \cos 3 x}{1}=3
$$

and

$$
\lim _{x \rightarrow 0^{+}} \frac{e^{a x}-1}{x}={ }^{\mathrm{LH}} \lim _{x \rightarrow 0^{+}} \frac{a e^{a x}}{1}=a
$$

we have $a=c=3$.
2. (a) $f^{\prime}(x)=\ln 3 \cdot\left(4 \sec ^{2}(4 x)\right) 3^{\tan (4 x)}$
(b) $h^{\prime}(x)=2 x \cos \left(x^{2}\right) \cos ^{2}(3 x)-6 \sin \left(x^{2}\right) \cos (3 x) \sin (3 x)$
(c) $y=x^{e^{x}}$

$$
\ln y=e^{x} \ln x
$$

$$
\frac{y^{\prime}}{y} e^{x} \ln x \frac{e^{x}}{x}
$$

$$
y^{\prime}=e^{x}\left(\ln x+\frac{1}{x}\right) x^{e^{x}}
$$

(d) $g^{\prime}(x)=\frac{\left(4 e^{x}+4 x e^{x}\right)\left(\sqrt{x^{4}+5}\right)+4 x e^{x}\left(\frac{4 x^{3}}{2 \sqrt{x^{4}+5}}\right)}{x^{4}+5}$
3. (a) $\lim _{x \rightarrow 5} f(x)=\infty$
(b) $\lim _{x \rightarrow-3^{+}} f(x)=-4$
(c) $\lim _{h \rightarrow 0} \frac{f(h)-f(0)}{h}=f^{\prime}(0)=2$
(d) $f(1.85)=2(1.85)+2=5.7$.
(e) Let $g^{\prime}(x)=2 f(x) f^{\prime}(x)=0$ when $f(x)=0$ so $x=-9.5,5,-1$ or when $f^{\prime}(x)=0$ so when $x=-8,-5,3$.
(f) Let $h^{\prime}(3)=f^{\prime}(f(3)) f^{\prime}(3)=f^{\prime}(4.5) \cdot 0=0$.
4. (a) Implicit differentiation:

$$
3 x^{2}+3 y^{2} y^{\prime}=2 y+2 x y^{\prime}
$$

At $(1,1)$

$$
3+3 y^{\prime}=2+2 y^{\prime}
$$

so $y^{\prime}=-1$. The tangent line is

$$
y-1=-1(x-1)
$$

or $y=-x+2$.
(b) $0.93 \approx-x+2$ so $x \approx 1.07$.
(c) From $3 x^{2}+3 y^{2} y^{\prime}=2 y+2 x y^{\prime}$,

$$
y^{\prime}=\frac{2 y-3 x^{2}}{3 y^{2}-2 x} .
$$

The tangent line is horizontal when $y^{\prime}=0$ so we solve $2 y-3 x^{2}=0$ together with $x^{3}+y^{3}=2 x y$ to get the point

$$
\left(\frac{2^{4 / 3}}{3}, \frac{2^{5 / 3}}{3}\right) .
$$

5. (a) The tangent slope is given by

$$
\frac{d y}{d x}=\frac{y^{\prime}(t)}{x^{\prime}(t)}=\frac{4 \pi \cos (\pi t)}{-5 \pi \sin (\pi t)}=\frac{4 \cos (\pi t)}{-5 \sin (\pi t)}
$$

so the slope of the normal line is

$$
\frac{-1}{d y / d x}=\frac{5 \sin (\pi t)}{4 \cos (\pi t)}
$$

and the equation of the normal line is

$$
y-4 \sin (\pi t)=\frac{5 \sin (\pi t)}{4 \cos (\pi t)}(x-5 \cos (\pi t))
$$

(b) Setting $y=0$ above

$$
-4 \sin (\pi t)=\frac{5 \sin (\pi t)}{4 \cos (\pi t)}(x-5 \cos (\pi t))
$$

so

$$
x_{N}=\frac{9}{5} \cos (\pi t)
$$

(c) $\lim _{t \rightarrow 0^{+}} \frac{9}{5} \cos (\pi t)=\frac{9}{5}$
6. (a) Since $V=b^{2} h$, differentiating with respect to t :

$$
\frac{d V}{d t}=b^{2} \frac{d h}{d t}+2 b h \frac{d b}{d t}
$$

When $b=4$ and $h=3$,

$$
\frac{d V}{d t}=4^{2}(-5)+2 \cdot 4 \cdot 3(3)=-8
$$

(b) To check whether $\frac{d V}{d t}$ is increasing or decreasing we check the sign of $\frac{d^{V}}{d t^{2}}$. So, diffentiate again:

$$
\frac{d^{2} V}{d t^{2}}=\frac{d}{d t} \frac{d V}{d t}=\frac{d}{d t}\left(b^{2} \frac{d h}{d t}+2 b h \frac{d b}{d t}\right)=b^{2} \frac{d^{2} h}{d t^{2}}+2 b \frac{d b}{d t} \frac{d h}{d t}+2 b \frac{d h}{d t} \frac{d b}{d t}+2 h \frac{d b}{d t} \frac{d b}{d t}
$$

Now plug in the values (note that $\frac{d^{2} h}{d t^{2}}=0$ since $d h / d t$ was constant)

$$
\frac{d^{2} V}{d t^{2}}=4^{2} \cdot 0+2 b(3)(-5)+2 b(-5)(3)+2 h(3)^{2}=-186<0
$$

so the rate of chage is decreasing.
7. Let (x, y) be the top right corner of the rectangle. Then, from $\frac{x^{2}}{400}+\frac{y^{2}}{225}=1$ we get

$$
y=15 \sqrt{1-\frac{x^{2}}{20^{2}}}=\frac{15}{20} \sqrt{400-x^{2}}=\frac{3}{4} \sqrt{400-x^{2}}
$$

so the perimeter is

$$
P(x)=4 x+4 y=4 x+3 \sqrt{400-x^{2}}
$$

with domain $0 \leq x \leq 20$. To find the critical numbers, we differentiate:

$$
P^{\prime}(x)=4+\frac{-3 x}{\sqrt{400-x^{2}}}=0
$$

to get the only critical number $x=16$.
To verify it gives a max, either compare $P(0)=60, P(20)=80$, and $P(16)=64+3 \sqrt{144}=100$ or use the first derivative test on $P^{\prime}(x)$, for example, $P^{\prime}(1)=4-\frac{3}{\sqrt{399}}<0$ and $P^{\prime}(19)=4-\frac{57}{\sqrt{39}}>$ 0 . (Or, if you are up for it, show $P^{\prime \prime}(16)<0$).
The dimensions of the rectangle are $2 x=32$ by $2 y=18$.
8. Consider the function $f(x)=\frac{8}{x^{2}+4}$.
(a) There are no x-intercepts since $\frac{8}{x^{2}+4}=0$ has no solutions. The y-intercept is $f(0)=2$.
(b) Since

$$
\lim _{x \rightarrow \infty} \frac{8}{x^{2}+4}=\lim _{x \rightarrow-\infty} \frac{8}{x^{2}+4}=0
$$

$y=0$ is the horizontal asymptote on both sides.
(c) The derivative is

$$
f^{\prime}(x)=-\frac{16 x}{\left(x^{2}+4\right)^{2}}=0
$$

when $x=0$. Checking its sign with

$$
f^{\prime}(-1)=-\frac{-16}{(1+4)^{2}}>0, f^{\prime}(1)=f^{\prime}(x)=-\frac{16}{(1+4)^{2}}<0
$$

we see the function is increasing on $(-\infty, 0)$ and decreasing on $(0, \infty)$.
(d) Local max at $x=0$. No local min.
(e) The second derivative is

$$
f^{\prime \prime}(x)=\frac{-16\left(x^{2}+4\right)-(-16 x) \cdot 2\left(x^{2}+4\right)(2 x)}{\left(x^{2}+4\right)^{4}}=\frac{16\left(4 x^{2}-1\right)}{\left(x^{2}+4\right)^{3}}=0
$$

when $x= \pm 0.5$. Checking signs:

$$
f^{\prime \prime}(-1)=\frac{16(4-1)}{(1+4)^{3}}>0, f^{\prime \prime}(0)=\frac{16(-1)}{(4)^{3}}<0, f^{\prime \prime}(1)=\frac{16(4-1)}{(1+4)^{3}}>0
$$

so the graph is concanve up on $(-\infty,-1 / 2)$ and $(1 / 2, \infty)$ and concanve down on $(-1 / 2,1 / 2)$. Using $f^{\prime \prime}(x)$, find the intervals where f is concave up and where it is concave down.
(f) from above it has inflection at $(1 / 2,32 / 17)$ and $(-1 / 2,32 / 17)$.
(g)

