Your Name
\square
Student ID \#
\square
Professor's Name

Your Signature

Quiz Section

TA's Name

READ THE INSTRUCTIONS!

- These exams will be scanned. Write you name, student number and quiz section clearly.
- Turn off and stow away all cell phones, pagers, radios, mp3 players, and other similar devices.
- This exam is closed book. You may use one $8.5^{\prime \prime} \times 11^{\prime \prime}$ sheet of handwritten notes (both sides OK). Do not share notes. No photocopied or printed materials are allowed.
- Give your answers in exact form. For example, $\frac{\pi}{3}$ or $5 \sqrt{3}$ are exact numbers while 1.047 and 8.66 are decimal approximations for the same numbers.
- You can only use a Texas Instruments TI-30X IIS calculator.
- In order to receive credit, you must show all of your work. If you do not indicate the way in which you solved a problem, you may get little or no credit for it, even if your answer is correct.
- This exam has 9 pages plus this cover page with 8 questions. Please make sure that your exam is complete.

Problem	Score	Problem	Score	Problem	Score
$1(15 \mathrm{pts})$		$4(12 \mathrm{pts})$		$7(11 \mathrm{pts})$	
$2(18 \mathrm{pts})$		$5(12 \mathrm{pts})$		$8(15 \mathrm{pts})$	
$3(12 \mathrm{pts})$		$6(12 \mathrm{pts})$		Total	

1. (15 total points) Answer the following.
(a) (6 points) Evaluate

$$
\lim _{\theta \rightarrow \pi / 2} \frac{\sin ^{2} \theta-5 \sin \theta+4}{\sin ^{2} \theta-1}
$$

using two different methods, neither of which is guessing the answer from a table of values.

Using first method:

Using second method:
(b) (4 points) Evaluate $\lim _{x \rightarrow 3}\left(\frac{1}{\sqrt{x+1}}-\frac{1}{2}\right)$.
(c) (5 points) Find the values of a and c so that $f(x)$ is continuous $x=0$.

$$
f(x)= \begin{cases}\frac{e^{a x}-1}{x} & x>0 \\ c & x=0 \\ \frac{\sin (3 x)}{x} & x<0\end{cases}
$$

2. (18 total points) Find the derivatives of the following functions. You do not have to simplify.
(a) (4 points) $f(x)=3^{\tan (4 x)}$
(b) (4 points) $h(x)=\sin \left(x^{2}\right) \cos ^{2}(3 x)$
(c) (5 points) $y(x)=x^{e^{x}}$
(d) (5 points) $g(x)=\frac{4 x e^{x}}{\sqrt{x^{4}+5}}$
3. (12 points) The function $f(x)$ whose graph is given below has domain all numbers except for $x=5$. Answer the questions based on the graph below.

(a) $\lim _{x \rightarrow 5} f(x)=$
(b) $\lim _{x \rightarrow-3^{+}} f(x)=$
(c) $\lim _{h \rightarrow 0} \frac{f(h)-f(0)}{h}=$
(d) Give your best estimate for $f(1.85)$.
(e) Let $g(x)=(f(x))^{2}$. Find all values of x where $g^{\prime}(x)=0$.
(f) Let $h(x)=f(f(x))$. Compute $h^{\prime}(3)$.
4. (12 points) A curve is given implicitly by the equation

$$
x^{3}+y^{3}=2 x y .
$$

A graph is shown on the right to help you visualize.

(a) Find the equation of the tangent line to the curve at the point $(1,1)$.
(b) Use linear approximation to find the value of x when $y=0.93$.
(c) Find the coordinates of the point P on the curve where the tangent line is horizontal.
5. (12 points) An object is moving in the $x y$-plane according to the parametric equations:

$$
\begin{aligned}
x(t) & =5 \cos (\pi t) \\
y(t) & =4 \sin (\pi t)
\end{aligned}
$$

When $0<t<\frac{1}{2}$, the location $P(t)=(x(t), y(t))$ of the object will be in the first quadrant, as pictured below. Let ℓ be the normal line to the trajectory at $P(t)$ and x_{N} the x-intercept of ℓ. (The normal line ℓ is perpendicular to the tangent line through $P(t)$.)
(a) Write the equation of the normal line ℓ through $P(t)$, assuming $0<t<\frac{1}{2}$.

(b) Find an expression for x_{N} as a function of t.
(c) Compute $\lim _{t \rightarrow 0^{+}} x_{N}=$
6. (10 points) The dimensions of a rectangular box with square bottom are changing. The length of the side of the base is increasing at a constant rate of $3 \mathrm{ft} / \mathrm{min}$ and the height is decreasing at a constant rate of $5 \mathrm{ft} / \mathrm{min}$.

(a) What is the rate of change of the volume of the box when the length of the side of the base is 4 ft and the height is 3 ft ?
(b) Is the rate of change of the volume of the box increasing or decreasing when the length of the side of the base is 4 ft and the height is 3 ft ? Explain.
7. (11 points) A rectangle is inscribed in the ellipse

$$
\frac{x^{2}}{400}+\frac{y^{2}}{225}=1
$$

with sides parallel to the axes, as pictured. Find the dimensions of the rectangle of maximum perimeter which can be so inscribed.

8. (15 total points) Consider the function $f(x)=\frac{8}{x^{2}+4}$.
(a) What are the x - and y-intercepts of the graph of f ?
(b) Determine the horizontal asymptotes of f.
(c) Find all critical numbers of $f(x)$ and determine the intervals in which f is increasing and in which it is decreasing.
(d) Determine the local minima and local maxima of f.

Recall that the function is $\quad f(x)=\frac{8}{x^{2}+4}$.
(e) Using $f^{\prime \prime}(x)$, find the intervals where f is concave up and where it is concave down.
(f) List the inflection points on the graph of f.
(g) Using all of the above information, sketch the graph of f in the provided coordinate system. Mark any important points that came up in your computations.

