Answers to Math 124 Autumn 2022 Final Exam

1. (a) $\lim _{x \rightarrow 0} \frac{\cos (3 x)-1}{x^{2}}={ }^{\mathrm{LH}} \lim _{x \rightarrow 0} \frac{-3 \sin (3 x)}{2 x}={ }^{\mathrm{LH}} \lim _{x \rightarrow 0} \frac{-9 \cos (3 x)}{2}=-\frac{9}{2}$
(b) $\lim _{x \rightarrow 0^{+}} \frac{e^{x}+e^{-x}}{e^{x}-e^{-x}}=\infty$ because $\lim _{x \rightarrow 0^{+}}\left(e^{x}+e^{-x}\right)=2, \lim _{x \rightarrow 0^{+}}\left(e^{x}-e^{-x}\right)=0$, and $e^{x}-e^{-x}>0$ when $x>0$.
(c) Since

$$
\begin{array}{r}
\lim _{x \rightarrow \infty} \frac{2 x+1}{x+1}={ }^{\text {LH }} \lim _{x \rightarrow \infty} \frac{2}{1}=2, \\
\lim _{x \rightarrow \infty}(\ln (2 x+1)-\ln (x+1))=\lim _{x \rightarrow \infty} \ln \left(\frac{2 x+1}{x+1}\right)=\ln 2
\end{array}
$$

2. (a) $f^{\prime}(x)=\frac{e^{3 x}\left(\frac{2}{1+4 x^{2}}+2 x\right)-3 e^{3 x}\left(\arctan (2 x)+x^{2}\right)}{e^{6 x}}$.
(b) $g^{\prime}(x)=\cos \left(x^{4}+e^{x^{2}+x}\right) \cdot\left(4 x^{3}+e^{x^{2}+x}(2 x+1)\right)$.
(c) $h^{\prime}=(x)=\frac{1}{x} \cdot \arctan \left(4 x^{2}\right) \cdot \sqrt{x^{2}+x}+\ln (x) \cdot \frac{8 x}{1+16 x^{4}} \cdot \frac{2 x+1}{2 \sqrt{x^{2}+x}}+\ln (x) \cdot \arctan \left(4 x^{2}\right) \cdot \sqrt{x^{2}+x}$.
3. By the Chain Rule, $g^{\prime}(x)=f^{\prime}(f(x)) \cdot f^{\prime}(x)$ and $h^{\prime}(x)=2 f(x) f^{\prime}(x)$.
(a) $f^{\prime}(2.5)=-1$.
(b) $g^{\prime}(5)=f^{\prime}(f(5)) \cdot f^{\prime}(5)=f^{\prime}(0) \cdot \frac{1}{2}=-\frac{1}{2}$.
(c) $g^{\prime}(x) \neq 0$ because $f^{\prime}(x) \neq 0$ for any x. Since, $f^{\prime}(3)$ is not defined, g^{\prime} is not defined when $x=3$ or $f(x)=3$. So the three critical points of g where g^{\prime} is not defined are: $x=3,-1,11 . g$ is differentiable everywhere else.
(d) $\lim _{x \rightarrow 0} \frac{g(x)}{x}={ }^{\mathrm{LH}} \lim _{x \rightarrow 0} \frac{g^{\prime}(x)}{1}=g^{\prime}(0)=f^{\prime}(f(0)) \cdot f^{\prime}(0)=-1 \cdot-1=1$.
(e) $h^{\prime}(x)>0$ when both f, f^{\prime} are positive or both are negative: $(2,3)$ and $(5, \infty)$.
4. (a) $1^{2 \cdot 1}=1^{1}=1$
(b) $\ln y=\ln \left(x^{2 y}\right)=2 y \ln x$

$$
\frac{y^{\prime}}{y}=2 y^{\prime} \ln x+\frac{2 y}{x}
$$

WHen $x=y=1$,

$$
\frac{y^{\prime}}{1}=2 y^{\prime} \ln 1+\frac{2}{1}=2
$$

Tangent line is $y-1=2(x-1)$ so the approximations is $y-1 \approx 2(1.05-1)$, so $y \approx 1.1$.
(c) Second derivative:

$$
\frac{y^{\prime \prime} y-y^{\prime} y^{\prime}}{y^{2}}=2 y^{\prime \prime} \ln x+2 y^{\prime} \cdot \frac{1}{x}+\frac{2 y^{\prime} x-2 y}{x^{2}}
$$

When $x=y=1, y^{\prime}=2$,

$$
\frac{y^{\prime \prime}-4}{1}=2 y^{\prime \prime} \ln 1+4+2=6
$$

so $y^{\prime}=10>0$, the curve is concave up and we have an underestimate.
5.

$$
\frac{d x}{d t}=2 t, \frac{d y}{d t}=3 t^{2}+4 t-1, \frac{d y}{d x}=\frac{3 t^{2}+4 t-1}{2 t}
$$

(a)

$$
m_{1}=\frac{3+4-1}{2}=3, m_{-1}=\frac{3-4-1}{-2}=1
$$

(b) $(x(1), y(1))=(1,2)=(x(-1), y(-1))$
(c) It is the first picture with both slopes positive.
(d) On the steeper piece (near $t=1$ with slope 3), you are going up $\frac{d y}{d t}>0$ and right $\frac{d y}{d t}>0$. On the other piece (near $t=-1$ with slope 1), you are going down $\frac{d y}{d t}<0$ and left $\frac{d y}{d t}<0$.
6. We know $\frac{d s}{d t}=4$ and we want $\frac{d x}{d t}$. Since $\tan \theta=x / 60$ and $s=50 \theta$ the relation is

$$
\tan \left(\frac{s}{50}\right)=\frac{x}{60}
$$

so

$$
\sec ^{2}\left(\frac{s}{50}\right) \cdot \frac{d s}{d t} \cdot \frac{1}{50}=\frac{1}{60} \cdot \frac{d x}{d t}
$$

When Retta is 35 m from wall, $\theta=\pi / 3$ and $s=50 \pi / 3$ so

$$
\frac{d x}{d t}=\frac{96}{5}=19.2
$$

7. There are several ways to find the distance s he swims from A to B. Using Law of Cosines with the triangle $A O B$:
$s^{2}=120^{2}+120^{2}-2 \cdot 120 \cdot 120 \cdot \cos (\pi-\theta)=120^{2}(2+2 \cos \theta)$
Using the right triangle $A B D$:

$$
s^{2}=(120 \sin \theta)^{2}+(120+120 \cos \theta)^{2}=120^{2}(2+2 \cos \theta)
$$

Using the right triangle $A B C$:

$$
s=240 \cos (\theta / 2)
$$

Using the right triangle $A E D$:

$$
s=2 \cdot 120 \cos (\theta / 2) .
$$

So you use one of

$$
f(\theta)=\frac{120 \sqrt{2+2 \cos \theta}}{6}+\frac{120 \theta}{2} \text { or } g(\theta)=\frac{240 \cos (\theta / 2)}{6}+\frac{120 \theta}{2}
$$

with $0 \leq \theta \leq \pi$. The critical number is $\theta=\pi / 3$, but the minimum happens at the endpoint $\theta=\pi$, so he should run and not get wet at all (which he prefers).
8. Consider the function $f(x)=-\frac{1}{6} x^{2}+x-\frac{2}{3} \ln x$.
(a) $x>0$ (because of $\ln x$)
(b) Vertical $x=0$ (because of $\ln x$). No horizontal since $\lim _{x \rightarrow \infty} f(x)=\infty$.
(c) $f^{\prime}(x)=-\frac{1}{3} x+1-\frac{2}{3 x}=-\frac{(x-1)(x-2)}{3 x}$. $\mathrm{CN}: x=1,2 \cdot(x=0$ in not a CN because it is not in the domain.)
(d) $f(x)$ is increasing on $(1,2)$ and decreasing on $(0,1)$ and $(2, \infty)$.
(e) Min at $x=1$ with point approximately $(1,0.83)$. Max at $x=2$ with point approximately $(2,0.87)$.
(f) $f^{\prime \prime}(x)=-\frac{1}{3}+\frac{2}{3 x^{2}}=-\frac{(x-\sqrt{2})(x+\sqrt{2})}{3 x^{2}}$. Concave up on $(0, \sqrt{2})$ and concave down on $(\sqrt{2}, \infty)$. (Note that the domain is $x>0)$. Inflection point $(\sqrt{2}, f(\sqrt{2})) \approx(1,41,0.85)$.
(g)

