Midterm 2 Key		
Tuesday, February 20, 2024 10:56 AM		
Math 120 Section Midterm II, February 22nd Winter 2024		
Instructor: Natalie Naehrig Section A		
HONOR STATEMENT I affirm that my work upholds the highest standards of honesty and academic integrity at		
the University of Washington, and that I have neither given nor received any unauthorized		
assistance on this exam.		
Name Signature		
Student ID #		
• Silence your phone and put it away.		
• You have 50 minutes for 4 problems. Check your copy of the exam for completeness.		
• You are allowed to use a hand written sheet of paper (8x11 in), back and front.		
• Calculator : TI 30 XIIS.		
• Justify all your answers and show your work for credit.		
• All answers must be exact, no rounding.		
• Each problem is worth 10 points.		
Do not open the test until everyone has a copy and the start of the test is announced.		
GOOD LUCK!		
Problem 1. Consider the function $f(x) = \frac{1}{2}(x+2)^2 - 1$ with domain $-6 \le x \le -2$. The		
graph of f is shown on the next page.		
(a) Compute the range of $f(x)$.		
$f(-6) = \frac{1}{2}(-4)^2 + \frac{1}{2} = 8 - 1 = 7$ $f(-2) = \frac{1}{2} \cdot 0^2 - 1 = -1$		
rang1 = y ∈ 7		
(b) Mark the correct circles: The function $f(x)$ has an inverse because it is \bullet one-to-one		
O onto so it passes the horizontal O vertical line test.		
(c) What are domain and range of $f^{-1}(x)$?		
domain: $-1 \le x \le 7$		

(e) Using the diagonal y=x, sketch the inverse function of f(x) in the given coordinate system. At least 3 points of the graph should be precise. 10 -5-(-5,2) -10 -5 10 5 12,-5) (3-6) -10

Problem 2. The population growth of City A and City B follow an exponential model. At the beginning ($t=0,\,t$ in years), City A had a population of 24,000 people with a doubling time of 50 years. City B has an initial population of of 50,000 people and grows by 5% in 5 years.

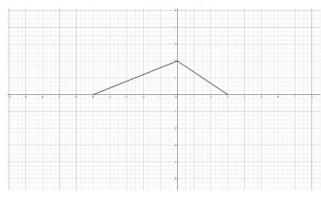
(a) Set up the exponential functions that model City A's and City B's population. The variable t should be in years. Round to 6 decimal places.

City A: $\sqrt[50]{2} = b \approx 1.013959$, A = 24,000 $f_A(t) = 24,000.1.03959^t$ City B: $\sqrt[5]{1.00} = b \approx 1.009806$, A = 50,000 $f_B(b) = 50,000.1.009806^t$

(b) When will the population of City A be equal to that of City B? Round to the nearest year.

> fA(+) = fB(+) → 24,000 · 1.013 959t = 50,000 · 1.009 806t $\Rightarrow t = \frac{\ln \frac{50}{24}}{\ln \frac{1.0139}{1.003959}} \approx 179 \text{ yrs}$

(c) What is the doubling time of City B's population? Round to the nearest year.


T= 1/2 ~ 71 yrs

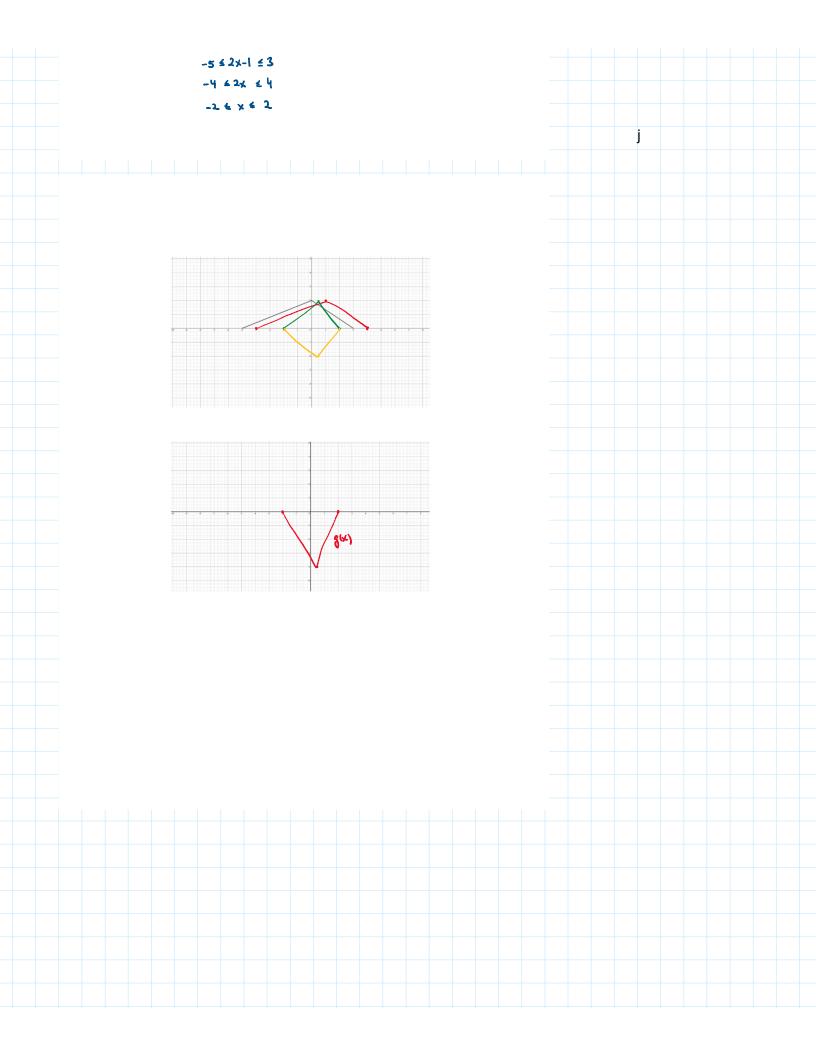
(d) Assuming that City A's population growth followed the same model before observation started, when was City A's population at 17,000 people? Rand to the weest year

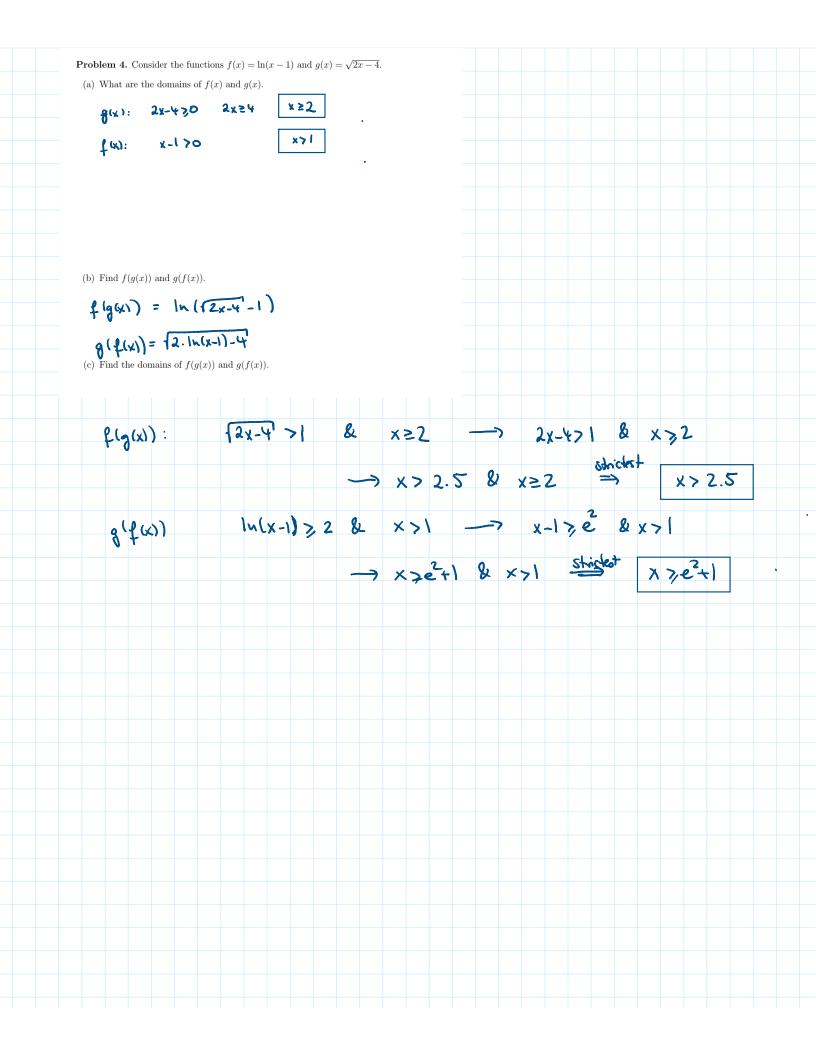
17,000 = 24,000. 1.013959t

$$t = \frac{\ln \frac{17}{24}}{\ln 1013959} \sim -25 \text{ yrs}$$

Problem 3. Consider a function f(x) whose graph is shown below.

(a) What are the domain and range of f(x)?


domain: -6 = x = 3 range 0= y = 2


(b) Identify the transformations f has to undergo to obtain g(x) = -2f(2x-1). To do so, mark all circles that apply. By writing numbers $1, 2, 3, \ldots$, in front of the relevant transformations, indicate the order by which they need to be applied. Further, fill any other blanks, if applicable. If a transformation does not apply, leave the circles blank.

3. Reflection about the x-axis.

O Reflection about the y-axis.

- (c) Sketch the graph of g(x) in the given coordinate system on the next page. The original graph as well as a blank coordinate system have been provided. Use the first coordinate system to perform one transformation after the other. Use the blank coordinate system to present your final graph of g(x).
- (d) Find the domain of g(x) through algebra and confirm with your graph.

