HONOR STATEMENT
I affirm that my work upholds the highest standards of honesty and academic integrity at the University of Washington, and that I have neither given nor received any unauthorized assistance on this exam.

Signature
\square

Student ID \#
Please circle Section
AA AB AC
BA BB BC

	1.	2.	3.	4.	\sum
Possible	10	10	15	15	50
Points					

- Please turn off your cell phone and put it away.
- There are 4 problems on 10 pages. Check your copy of the exam for completeness. Note that front and back of the pages are printed on.
- You are allowed to use a hand written sheet of paper ($8 \times 11 \mathrm{in}$), back and front.
- The only calculator allowed is Ti-30x IIS
- When applicable, make a labeled sketch of the situation. It will grant you at least 1 point.
- Justify all your answers and show your work for full credit.

Do not open the test until everyone has a copy and the start of the test is announced.

Problem 1 (10 points) Consider the quadratic function $f(x)=3 x^{2}+9 x+2.75$ with domain $-\infty \leq x \leq-\frac{3}{2}$.
(a) What is the range of f ?
(b) Find the inverse function f^{-1} of f.
(a) Put into vertex form: $f(x)=3\left(x^{2}+3 x+1.5^{2}-1.5^{2}\right)+2.75$
(5) partial credit ok $=3\left((x+1.5)^{2}-2.25\right)+2.75$

$$
=3(x+1.5)^{2}-4
$$

vertex is at $(-1.5,-4)$, opening up, so rage is

$$
y \geq-4
$$

(b)

$$
\left.\begin{array}{l}
y=3(x+1.5)^{2}-4 \\
\rightarrow \frac{1}{3}(x+4)=(y+1.5)^{2} \rightarrow \pm=3(y+1.5)^{2}-4 \\
\hline-\sqrt{\frac{x+4}{3}}=y+1.5
\end{array}\right\} \begin{aligned}
& \text { 4) partial } \\
& \text { crit o.k }
\end{aligned}
$$

$\rightarrow y=-1.5 \pm \sqrt{\frac{x+4}{3}}$. Now the domain of f is $x \leq-\frac{3}{2}$
(1) \rightarrow This means the rang of f^{-1} is $x \leq-\frac{3}{2}$

Thus must choose negative root

$$
\rightarrow y^{y=-1.5-\sqrt{\frac{x+y}{3}}=f^{-1}(x)}
$$

Problem 2 (10 points) Consider the function $f(x)=\sqrt{x}$ on the domain $0 \leq x \leq 9$. A graph of f looks like Figure 1 on page 4.
Through shifting, reflecting and dilation this function was altered to $g(x)=-\frac{1}{2} f(-2 x+9)$.
(a) Find the do and the range of $g(x)$.
(b) Describe the manipulations to the graph we did. Add details by using 'compressed/stretched by factor....', 'reflected about the-axis', 'shifted right/left/up/down by units':

HORIZONTAL	shift: shift tote left be 9 wits
dilation: compression by factor 2	
reflection reflection about y-axis	

(c) Identify the graph of $g(x)$ among the those on page 5.
a) Domain of f : range off: $0 \leq y \leq 3$

$$
0 \leq x \leq 9
$$

Domain of g : $0 \leq-2 x+9 \leq 9$

$$
\begin{aligned}
-q & \leq-2 x \leq 0 \\
4.5 & =\frac{9}{2} \geq x \geq 0
\end{aligned}
$$

domain of g is

$$
\begin{aligned}
& 0 \leq x \leq 4.5 \\
& -\frac{3}{2} \leq g(x) \leq 0
\end{aligned}
$$

(a) Figure 1

(a) Option a) \square

(c) Option c \square

(e) Option e X

(b) Option b \square

(d) Option d \square

(f) Option $\mathrm{f} \square$

Problem 3 (15 points) The population of City A is growing at a constant rate of 2% each year. In the year 2000, this city had 20,000 inhabitants. The population of City B grows exponentially. In 2010, City B had half as many inhabitants as City A at that time. In 2020, City B had 5,000 inhabitants more than City A. In which year did both cities have the same number of inhabitants?
$t=$ years passed since year 2000
City A: $\quad N_{A}(t)=20,000 \cdot 1.02^{t} \Rightarrow$ (i) or constant (1) for youth rate

City $B: \quad N_{B}(t)=N_{0} \cdot b^{t}$ (themplate
(*1) $N_{B}(10)=\frac{1}{2} N_{A}(10) \rightarrow \quad N_{0} \cdot b^{10}=10,000 \cdot 1.02^{10}$
(*2) $N_{B}(20)=N_{A}(20)+5000 \rightarrow N_{0} \cdot b^{20}=20,000 \cdot 1.02^{20}+5000$ (1)

Now (*1):

$$
\begin{aligned}
& N_{0}=\frac{10,000 \cdot 1.02^{10}}{b^{10}} \xrightarrow{i \ldots \pi 2)} \frac{(1) 10,000 \cdot 10}{b^{10}} \\
& \rightarrow b^{10}=\frac{34718.948}{12189.944}=2.84816 \\
& \rightarrow b=1.11 \rightarrow N_{0}=4293.109
\end{aligned}
$$

$$
\begin{aligned}
& \rightarrow b^{10}=\frac{34718.948}{12189.944}=2.84816 \\
& \rightarrow b_{0}^{(1)} 1.11 \rightarrow N_{0}=4293.109 \\
N_{B}(t) & =4293.109 \cdot 1.11^{t}
\end{aligned}
$$

Want: $\quad N_{A}(t)=N_{B}(t)$ (1)

$$
\begin{align*}
& 4293.109 .1 .11^{t}=20000 \cdot 1.02^{t} \\
& \Leftrightarrow \quad\left(\frac{1.11}{1.02}\right)^{t}=\frac{20000}{4293.109} \tag{1}\\
& \Leftrightarrow t \cdot \ln \left(\frac{1.11}{1.02}\right)^{2}=\ln \frac{20000}{4293.109} \\
& \Leftrightarrow \tag{1}
\end{align*}
$$ 34718.948

Problem 4 (15 points) While downloading the new season of their favorite TV show, Famlily Smile notices a slow-down of the download speed. It turns out that the downloaded percentage is a linear-to-linear rational function in time, where time t is measured in minutes. At first, the download was 0\%.
After 30 seconds, the download was at 18%.
After 4 minutes, the download was at 60%.
(a) Where will the download be after 20 long minutes?
(b) Will it ever finish the download? Explain your answer.
(a)

$$
\begin{aligned}
& f(t)=\frac{a t+b}{t+d} \text { (1) pupate } \\
& f(0)=0 \rightarrow b=0 \\
& f(0.5)=18 \% \rightarrow \frac{\frac{1}{2} a}{\frac{1}{2}+d}=18 \text { so } a=18+36 d(1) \\
& f(4)=60 \% \rightarrow \frac{4 a}{4+d}=60 \text { so } \frac{4(A+36 d)}{4+d}=60(1) \\
& \Rightarrow 42+144 d=240+600 d(2) \\
& 84 d=168 \\
& d=2(1) \rightarrow a=18+36.2=90 \\
& \Rightarrow f(t)=\frac{90 t}{t+2} \\
& f(0)=\frac{4900}{22}=81.8 \% \text { (1) }
\end{aligned}
$$

(6) The asymptote is 90% and the function is
(4). Deferent a apposisindlys dosilible proadning 90%, but never increasing ate approadming will never be reaclod.
crossing ing 100% wing

Extrapaper

