HONOR STATEMENT
I affirm that my work upholds the highest standards of honesty and academic integrity at the University of Washington, and that I have neither given nor received any unauthorized assistance on this exam.

Student ID \#

Signature
\square

Please circle Section
AA AB AC
BA BB BC

	1.	2.	3.	4.	\sum
Possible	10	10	15	15	50
Points					

- Please turn off your cell phone and put it away.
- There are 4 problems on 10 pages. Check your copy of the exam for completeness. Note that front and back of the pages are printed on.
- You are allowed to use a hand written sheet of paper (8 x 11 in), back and front.
- The only calculator allowed is Ti-30x IIS
- When applicable, make a labeled sketch of the situation. It will grant you at least 1 point.
- Justify all your answers and show your work for full credit.

Do not open the test until everyone has a copy and the start of the test is announced.

Problem 1 (10 points) Consider the quadratic function $f(x)=3 x^{2}+9 x+2.75$ with domain $-\infty \leq x \leq-\frac{3}{2}$.
(a) What is the range of f ?
(b) Find the inverse function f^{-1} of f.

Problem 2 (10 points) Consider the function $f(x)=\sqrt{x}$ on the domain $0 \leq x \leq 9$. A graph of f looks like Figure 1 on page 4.
Through shifting, reflecting and dilation this function was altered to $g(x)=-\frac{1}{2} f(-2 x+9)$.
(a) Find the domain and the range of $g(x)$.
(b) Describe the manipulations to the graph we did. Add details by using 'compressed/stretched by factor....', 'reflected about the-axis', 'shifted right/left/up/down by units':

HORIZONTAL	shift:
	dilation:
reflection	
VERTICAL	reflection:
	dilation:
	shift

(c) Identify the graph of $g(x)$ among the those on page 5.

(a) Figure 1

(a) Option a) \square

(c) Option c \square

(e) Option e \square

(b) Option b \square

(d) Option d \square

(f) Option $\mathrm{f} \square$

Problem 3 (15 points) The population of City A is growing at a constant rate of 2% each year. In the year 2000, this city had 20,000 inhabitants. The population of City B grows exponentially. In 2010, City B had half as many inhabitants as City A at that time. In 2020, City B had 5,000 inhabitants more than City A. In which year did both cities have the same number of inhabitants?

Problem 4 (15 points) While downloading the new season of their favorite TV show, Family Smile notices a slow-down of the download speed. It turns out that the downloaded percentage is a linear-to-linear rational function in time, where time t is measured in minutes. At first, the download was 0\%.
After 30 seconds, the download was at 18%.
After 4 minutes, the download was at 60%.
(a) Where will the download be after 20 long minutes?
(b) Will it ever finish the download? Explain your answer.

Extra Paper

Extrapaper

Extrapaper

