1. Similar to problem 5.2 from HW 2.
 ANSWER: \(\frac{f(a + h) - f(a)}{h} = 5 - 2a - h \)

2. Similar to problem 8.9 from HW 4.
 (a) HINT: The only values that you can plug into \(f \) are those values between -4 and 10. So, the domain of \(g \) is the set of all \(x \) such that \(-4 \leq \frac{1}{2}(x + 1) \leq 10\). The range of \(g \) is the same as the range of \(f \).
 ANSWER: \(D_g = [-9, 19], R_g = [0, 9] \)
 (b) HINT: The domain of \(h \) is the same as the domain of \(f \). The range of \(h \) consists of the values you get from taking the numbers in the range of \(f \), multiplying by \(\frac{1}{2} \) and adding 1.
 ANSWER: \(D_h = [-4, 10], R_h = [1, 5.5] \)

3. Similar to problem 2.6, done in class, and 5.9 from HW 3.
 HINT: You have \(x \) feet of pipe at $12 per foot along the road. The length of pipe off the road is the hypotenuse of a right triangle whose legs have length \(700 - x \) feet and 450 feet. Use the Pythagorean Theorem to find the length of the hypotenuse in feet. This length costs $17 per foot.
 ANSWER: \(C(x) = 12x + 17\sqrt{450^2 + (700 - x)^2} \)

4. Similar to problem 4.5, done in class.
 (a) HINT: You want the line that goes through the points (0, 75) and (8, 304).
 ANSWER: \(D(t) = 28.625t + 75 \)
 (b) HINT: You want the line that goes through the points (0, 210) and (8, 490).
 ANSWER: \(B(t) = 35t + 210 \)
 (c) HINT: Set \(D(t) = 250 \), solve for \(t \) and plug the resulting value into \(B(t) \).
 ANSWER: 424 books
 (d) HINT: Set \(B(t) = 2D(t) \) and solve for \(t \).
 ANSWER: \(t = 2.70 \) years OR during the year 1997

5. Contains elements of problem 3.7 from HW 2, 3.9 done in class, 4.7 from HW 2, and Chapter 1.
 (a) ANSWER: \((x - 70)^2 + (y - 40)^2 = 50^2 \)
(b) HINT: Compute \((100 - 70)^2 + (10 - 40)^2\). What does it mean if this number is less than \(50^2\)?

ANSWER: The boulder does lie in the field.

(c) HINT: Set \(y = 0\) in the equation for the circle in part (a) and solve for \(x\). You should get two values \((x = 40\) and \(x = 100\)). Farmer Jones walks 40 yards at 4 miles per hour.

ANSWER: 20.45 seconds

6. Contains elements of problem 7.1 done in class, 7.2 from HW 3, 7.5 from HW 3, and 6.10 from HW 3.

(a) HINT: Find the \(y\)-coordinate of the point on the parabola when \(x = 30\). That is, plug \(x = 30\) into the formula for the parabola.

ANSWER: 172 feet

(b) HINT: You want the \(y\)-coordinate of the vertex. You should note that the parabola is already in vertex form.

ANSWER: 217 feet

(c) HINT: Find where the parabola crosses the \(x\)-axis by setting \(-\frac{45}{529}(x - 53)^2 + 217\) equal to 0 and solving for \(x\). This will give the \(x\)-intercept. You must subtract 30 to get the distance from the base of the cliff.

ANSWER: 73.51 feet

(d) ANSWER: \(h(x) = \begin{cases} 172 & \text{if } 0 \leq x \leq 30 \\ -\frac{45}{529}(x - 53)^2 + 217 & \text{if } 30 \leq x \leq 103.51 \end{cases}\)