1. [5 points per part] A bike is made up of two wheels with diameter 2 feet.
The rear wheel is connected by an axle to a rear sprocket with diameter % feet.
The rear sprocket is connected by a chain to the front sprocket with diameter %% feet.

A biker pedals the front sprocket at a speed of 50 revolutions per minute.
(a) Find the {%peed of the bike;‘
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(b) The biker is riding the bike counterclockwise around a circular track with radius 25
feet, starting at the northernmost point.

Write parametric equations for the coordinates of the biker after ¢ minutes.

(Set the origin at the center of the circle, with north pointing upward.)
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2. [10 points] Steve’s backyard contains a triangular hedge, as shown in the figure below.
He uses hedge trimmers to trim the top y feet of the hedge.
Write a function A(y) for the area remaining after trimming. y feet
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3. The amount of water in a well is a linear-to-linear rational function of time.
In the year 2000, there was 7 feet of water in the well.
In the year 2002, there was 6 feet of water in the well.
In the year 2012, there was 5 feet of water in the well.

(a) [7 points] Write a function f(¢) for the amount of water in the well ¢ years after 2000.
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(b) [3 points] In the long run, what will the water level approach?
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4. Greg and Paul are walking around the coordinate plane.

(a) [3 points] Greg starts at the point (—2,4), and walks towards the point (4,0) in a
straight line at a constant speed, reaching it after 4 seconds.

Write parametric equations for Greg’s location after ¢ seconds.
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(b) [3 points] Paul starts at (5,7) and runs towards (—1, —1) at a constant speed of 2.5
units per second. Write parametric equations for Paul’s position after ¢ seconds.
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(c) [4 points] When are Greg and Paul closest together?
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5. For parts (a) and (b), put your answers in standard exponential form.

(a) [3 points] A band’s popularity grows exponentially over time.
100 people will attend their concert today. The popularity grows by 7% every 5 days.
Write a function a(¢) for the attendance ¢ days from now.
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(b) [3 points] The cost per ticket is also growing exponentially.

Right now, it’s $12 per ticket. The cost doubles every 30 days.
Write a function ¢(t) for the cost ¢ days from now.
C ("’3 =A, L*
A=12 LF=2
L= 2 /30

tso
c(t) = | Q ¢ ;2

(c) [4 points] When will the band make a total of $10,000 per concert?

Round your answer to the nearest day. Assume every person at the concert buys one ticket.
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6. [10 points] The temperature in Lake Wavia is a sinusoidal function of time.
2 hours from now, it will reach its minimum temperature of 70° F.
The temperature will then rise until it reaches a maximum of 80° E, 9 hours from now.

Over the next 24 hours (starting now), for how long will the temperature be above 78° F?
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7. [5 points per part] For this problem, consider the following function:
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(a) Sketch the graph of f:
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