1. Mrs. White is in the dining room using a knife to cut this cake:
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(a) [6 points] Suppose she makes a vertical cut = units from the left end of the cake.
Write a multipart function for the area to the left of the cut.
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(b) [4 points] Mrs. White wants to make two vertical cuts to divide the area of the cake
into three pieces of equal area. How far in should she make those two cuts?
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2. [10 points] Colonel Mustard is in the billiard room, and has tied two billiard balls together
with an 80-inch rope.

At time t = 0, he knocks the first ball north at a constant speed of 4 inches per second.

Two seconds later, he knocks the second ball from the same starting position as the first
ball. It travels west at a constant speed of 5 inches per second.

When does the rope become tight?
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3. Professor Plum is investigating a leaky lead pipe in the conservatory. It seems to be
causing the flowers to grow exponentially!

(a) [3 points] The number of forsythias doubles every 25 days.
Initially, there were 20 forsythias.
Write a function f(t) for the number of forsythias after ¢ days.
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(b) [4 points] The number of geraniums is also growing exponentially.
After 16 days, there were 10 geraniums, and after 22 days, there were 13 geraniums.

Write a function ¢(¢) for the number of geraniums after ¢ days.

jéb) =A, L ] t
0oL ] j@)- H.ﬂ?(l.ov‘f?‘)
13=A,6"

( ~
[3=L6> bz )oyyz- A © 4.97

(c) [3 points] When will the number of forsythias equal the number of geraniums?

Round your answer to the nearest day.
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4. Mrs. Peacock is standing in the study, where a candlestick is positioned on the floor.

Mrs. Peacock is 165 centimeters tall. The candlestick is 20 centimeters tall, and it’s holding
a candle which is 10 centimeters tall.

Let 6 be the angle of elevation of Mrs. Peacock’s head relative to the top of the candle, as
shown in the picture below.

(a) [5 points] Mrs. Peacock measures 6 to be 50°.

How far away from the candlestick is she? >
(In other words, what’s x?)
s
/ Mrs. Peacock | § 165 cm
-l-q,‘(g()o): 1)3_:; 10cm? /C/e;r?d?e
X
20 cm § | candlestick

é 3
Ay L4

T cm

13 a3y e

= T(\(Soj

(b) [5 points] The candle burns at a constant speed. After 1 minute, the angle ¢ is 51°.
When will the candle burn all the way down?
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5. Miss Scarlett is in the ballroom, dancing to a Beatles album.

Her dance proceeds clockwise in a circle of radius 20 feet at a constant speed. It takes her
17 seconds to make one complete lap, and she reaches the northernmost point 5 seconds
after she starts.

(a) [3 points] Find Miss Scarlett’s linear speed.
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(b) [4 points] Impose a coordinate system with the center of the circle at the origin.

Write parametric equations for Miss Scarlett’s coordinates after ¢ seconds.
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(c) [3 points] After 35 minutes, how far east is Miss Scarlett from her starting point?
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6. [5 points per part] Mr. Green is in the kitchen, using a wrench to adjust the water pressure
under the sink. The pressure is a sinusoidal function of time.

The pressure first reaches its maximum of 100 psi 13 minutes after the start.

It then decreases, reaching a minimum of 50 psi 35 minutes after the start.

(a) Find a function f(x) for the water pressure (in psi)  minutes after the start.
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(b) The maximum recommended water pressure in a home is 80 psi. In the first hour,
for how much time (total) is the pressure above this level?
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7. Mr. Boddy is in the library with a linear-to-linear rational function:
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(a) [4 points] Find the following data about this function:

Horizontal asymptote: a=3* y= 3

Vertical asymptote: d=1* x="9
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(b) [3 points] Compute f(f(6)).
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