1. [15 points] Gomba is learning to climb a new set of stairs. The time it takes him to climb them on his $n^{\text {th }}$ attempt is a linear-to-linear rational function of n.
On his $\mathbf{1}^{\text {st }}$ attempt, it took him 31 seconds to climb the stairs.
On his $4^{\text {th }}$ attempt, it took him 17 seconds to climb the stairs.
As Gomba continues to practice, the time it takes will approach (but not reach) 3 seconds.
How long does his $\mathbf{1 3}^{\text {th }}$ attempt take?

$$
f(n)=\frac{a n+b}{n+d}
$$

$$
\begin{aligned}
& f(n)=\frac{10}{n+d} \\
& f(1)=31 \rightarrow \frac{a+b}{1+d}=31 \rightarrow 3+b=31+31 d \rightarrow b=28+31 d
\end{aligned}
$$

$$
\begin{aligned}
& f(1)=31 \rightarrow 1+d \\
& \left.f(4)=17 \rightarrow \frac{4 a+b}{4+d}=17 \rightarrow\right\}_{d} 12+b=68+17 d
\end{aligned}
$$

$y=3$ is a horizontal asymptote $\rightarrow a=3$

$$
f(n)=\frac{3 n+90}{n+2}
$$

$$
12+28+31 d=68+17 d
$$

$$
14 d=28
$$

$$
d=2
$$

$$
b=28+31(2)
$$

$$
b=90
$$

$$
f(13)=\frac{3(13)+90}{13+2}=8.6 \text { seconds }
$$

2. [15 points] Three wheels are connected as shown in the diagram below: Wheels A and B are connected by an axle, and Wheels B and C are connected by a belt.

Wheel A has a radius of 5 meters, and rotates at a linear speed of 10 meters per second. Wheel C has a radius of 8 meters, and takes 9 seconds to make one complete rotation. What is the radius of wheel B?

$$
\text { angular speed is } \frac{2 \pi}{9} \mathrm{rad} / \mathrm{sec}
$$

Wheel	v	ω	r
A	10	2	5
B	$\frac{16 \pi}{9}$	2	$\frac{8 \pi}{9}$
C	$\frac{16 \pi}{9}$	$\frac{2 \pi}{9}$	8

$$
\frac{8 \pi}{9} \text { meters }
$$

3. [5 points per part] For each part of this question, let $f(x)=3 \log _{2}(x)+2$.
(a) Find a formula for $f^{-1}(x)$. Write your answer in standard exponential form.

$$
\begin{aligned}
& 3 \log _{2}(x)+2=y \\
& 3 \log _{2}(x)=y-2 \\
& \log _{2}(x)=\frac{y-2}{3} \\
& x=2^{\frac{y-2}{3}} \\
& f^{-1}(x)=2^{\frac{x-2}{3}}
\end{aligned}
$$

(b) Suppose $f(f(x))=11$. What's x ?

$$
\begin{aligned}
& 3 \log _{2}\left(3 \log _{2}(x)+2\right)+2=11 \\
& 3 \log _{2}\left(3 \log _{2}(x)+2\right)=9 \\
& \log _{2}\left(3 \log _{2}(x)+2\right)=3 \\
& 3 \log _{2}(x)+2=2^{3}=8 \\
& 3 \log _{2}(x)=6
\end{aligned}
$$

$$
\begin{aligned}
f^{-1}(x)=2^{\frac{x-2}{3}} & =2^{\frac{-2}{3}} 2^{\frac{x}{3}} \\
& =2^{\frac{-2}{3}}\left(2^{1 / 3}\right)^{x}
\end{aligned}
$$

(c) Let $g(x)=\log _{2}(x)$. What transformations (shifting, scaling, reflecting) will lead you from the graph of $y=g(x)$ to the graph of $y=f(x)$?

$$
\begin{aligned}
& y=3 \log _{2}(x)+2 \rightarrow \frac{y-2}{3}=\log _{2}(x) \\
& y=\log _{2}(x) \stackrel{?}{\longrightarrow} \frac{y-2}{3}=\log _{2}(x)
\end{aligned}
$$

Fill in the blanks:

- First, you scale vertically by a factor of 3
- Then, you shift 2 units up

4. [15 points] Steve is no longer invited to parties, because he keeps trying to entertain people with optimization problems. Here's his most notorious trick:
He takes a 16 cm piece of wire, breaks it into two pieces, and uses those pieces to construct two figures: a square, and a sector with angle 0.8 radians.
What is the minimum possible total area of these two shapes?
$\left.\left.A=\begin{array}{cc}\text { area of } \\ \text { square } \\ r_{2}^{2}\end{array} \right\rvert\, \begin{array}{c}\text { area of } \\ \text { sector }\end{array}\right)$
perim. of perim. of
square sector
$16=\sqrt{4 x}+\sqrt{2.8 r}$
$4 x=16-2.8 r$
$x=4-0.7 r$

$$
\begin{aligned}
A & =(4-0.7 r)^{2}+0.4 r^{2} \\
& =16-5.6 r+0.49 r^{2}+0.4 r^{2} \\
& =0.89 r^{2}-5.6 r+16
\end{aligned}
$$

$$
k=16-\frac{(-5.6)^{2}}{4(0.89)} \approx 7.191 \text { square } \mathrm{cm}
$$

