1. **[15 points]** Gomba is learning to climb a new set of stairs. The time it takes him to climb them on his n^{th} attempt is a linear-to-linear rational function of n.

On his **1**st attempt, it took him 31 seconds to climb the stairs.

On his 4th attempt, it took him 17 seconds to climb the stairs.

As Gomba continues to practice, the time it takes will approach (but not reach) 3 seconds. How long does his **13**th attempt take?

$$f(n) = \frac{a+b}{n+d}$$

$$f(1) = 31 \rightarrow \frac{a+b}{1+d} = 31 \rightarrow 3+b = 31+31d \rightarrow b = 28+31d$$

$$f(1) = 17 \rightarrow \frac{4a+b}{4+d} = 17 \rightarrow 12+b = 68+17d$$

$$y=3 \text{ is a horizontal asymptote a = 3}$$

$$f(n) = \frac{3n+90}{n+2}$$

$$I2+28+31d = 68+17d$$

$$I4d = 28$$

$$d=2$$

$$b=28+31(2)$$

$$b=28+31(2)$$

$$b=90$$

$$f(13) = \frac{3(13)+90}{13+2} = 8.6 \text{ seconds}$$

2. [15 points] Three wheels are connected as shown in the diagram below: Wheels A and B are connected by an axle, and Wheels B and C are connected by a belt.

Wheel A has a radius of 5 meters, and rotates at a linear speed of 10 meters per second. Wheel C has a radius of 8 meters, and takes 9 seconds to make one complete rotation. angular speed is 21 rad What is the radius of wheel B?

Jsec

				5	•
	m/sec	rad/ sec	m		
Wheel	V	ω	r		
A	10	2	5		
B	<u>167</u> 9	く	<u>ষ্ঠ শ</u> শ		
С	<u> 6 m</u> 9	277 9	8		
			<u>8π</u> 9	meter	2

- 3. [5 points per part] For each part of this question, let $f(x) = 3 \log_2(x) + 2$.
 - (a) Find a formula for $f^{-1}(x)$. Write your answer in standard exponential form.

(b) Suppose f(f(x)) = 11. What's x?

(c) Let $g(x) = \log_2(x)$. What transformations (shifting, scaling, reflecting) will lead you from the graph of y = g(x) to the graph of y = f(x)?

$$y = 3 \log_2(x) + 2 \rightarrow \frac{y-2}{3} = \log_2(x)$$

$$y = \log_2(x) \xrightarrow{?} \frac{y-2}{3} = \log_2(x)$$

shitt

Fill in the blanks:

• Then, you _

Units Up

4. **[15 points]** Steve is no longer invited to parties, because he keeps trying to entertain people with optimization problems. Here's his most notorious trick:

He takes a 16 cm piece of wire, breaks it into two pieces, and uses those pieces to construct two figures: a square, and a sector with angle 0.8 radians.

