Math 120 A - Spring 2022
 Midterm Exam Number One April 21st, 2022

Name: \qquad Student ID no. : \qquad

Signature: \qquad Section: \qquad

1	15	
2	15	
3	15	
4	15	
Total	60	

- This exam consists of FOUR problems on FOUR double-sided pages. The fourth page is left blank for scratch work.
- Show all work for full credit.
- You may use a TI-30X IIS (or equivalent) calculator during this exam. Other calculators and electronic devices are not permitted.
- You do not need to simplify your answers.
- If you use a trial-and-error or guess-and-check method when a more rigorous method is available, you will not receive full credit.
- Draw a box around your final answer to each problem.
- Do not write within 1 centimeter of the edge! Your exam will be scanned for grading.
- If you run out of room, write on one of the scratch work pages and indicate that you have done so. If you still need more room, raise your hand and ask for an extra page.
- You may use one hand-written double-sided $8.5^{\prime \prime}$ by $11^{\prime \prime}$ page of notes.
- You have 50 minutes to complete the exam.

You may use this page for scratch-work.
All work on this page will be ignored unless you write \& circle "see first page" below a problem.

1. [15 points] Jim is standing at the center of a circular ring of radius 10 meters.

At time $t=0$, Naomi is 16 meters west and 2 meters south of Jim.
Naomi runs in a straight line towards the northernmost point of the ring.
Naomi runs at a constant speed of 5 meters per second while she's outside the ring, but slows down to 3 meters per second once she enters the ring.
(a) When does Naomi enter the ring?
(b) When is Naomi closest to Jim?
2. [5 points per part] Gregg and Bea are walking around the coordinate plane.
(a) Gregg starts at the point $(5,-2)$, and walks towards the point $(-13,7)$ in a straight line at a constant speed, reaching it after 12 seconds.
Write parametric equations for Gregg's location after t seconds.
(b) Bea starts at the point $(-3,4)$, and walks towards the point $(3,-4)$ at a constant speed of 4 units per second.
Write parametric equations for Bea's location after t seconds.
(c) When is Gregg due north of Bea?
3. For this problem, consider the following multipart function:

$$
f(x)= \begin{cases}x+6 & \text { if }-6 \leq x<-3 \\ -1+\sqrt{25-(x-2)^{2}} & \text { if }-3 \leq x<2 \\ -1 & \text { if } 2 \leq x<5\end{cases}
$$

(a) [6 points] Sketch a graph of f here:

(b) [3 points] What is the range of f ?
(c) [6 points] Find all values of x such that $f(x)=2$.
4. Merlin is selling orbs. His profit is a quadratic function of how much he charges. If Merlin gives away the orbs for free, he'll lose \$200. If Merlin charges $\$ 10$ per orb, he'll earn a profit of $\$ 280$.
If Merlin charges $\$ 20$ per orb, he'll earn a profit of $\$ 700$.
(a) [12 points] Write a function $f(x)$ for Merlin's profit if he charges $\$ x$ per orb.
(b) [3 points] How much should Merlin charge to maximize his profit?

You may use this page for scratch-work.
All work on this page will be ignored unless you write \& circle "see back page" below a problem.

You may use this page for scratch-work.
All work on this page will be ignored unless you write \& circle "see back page" below a problem.

