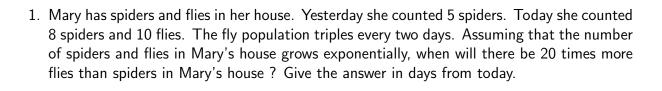
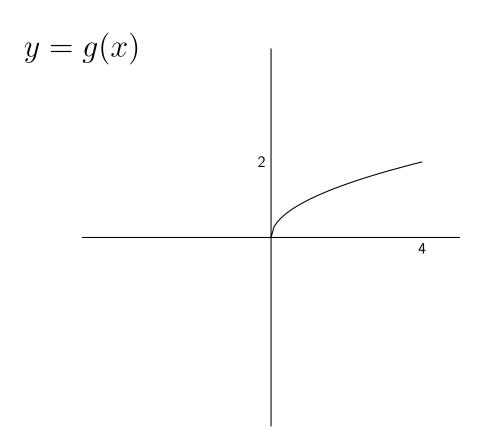
Math 120 (Pezzoli)
Spring 2019
Midterm #2

Name _____

Section:

Instructions:


- Your exam contains 3 problems.
- Your exam should contain 4 pages; please make sure you have a complete exam.
- Box in your final answer when appropriate.
- Unless stated otherwise, you MUST show work for credit. No credit for answers only. If in doubt, ask for clarification.
- Your work needs to be neat and legible.
- ullet You are allowed one 8.5 imes 11 sheet of notes (both sides). The only calculator allowed is Texas Instruments ti 30x iis.
- Round off your answers to 2 decimal places, unless you are asked for exact answers.


Problem #1(15 pts) _____

Problem #2(16 pts) _____

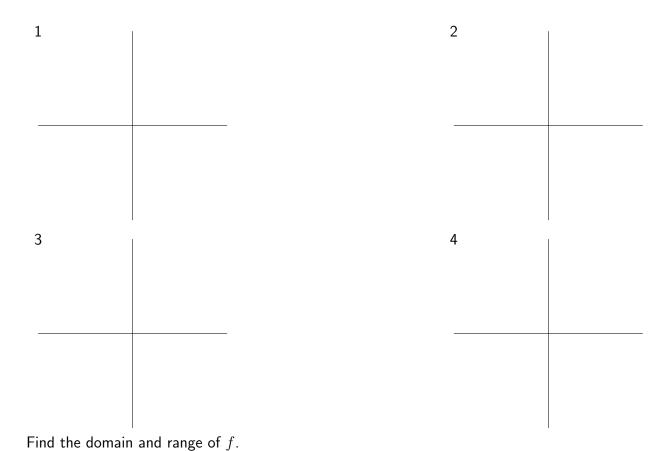
Problem #3(14 pts) _____

TOTAL (45 pts)

2.	Start with the function $g(x) = \sqrt{x}$ restricted to the domain $0 \le x \le 4$. The graph of
	this function is on the previous page. List below the graph shifts, scaling (stretches or
	compressions) and reflections which, when applied to the graph of $g(x) = \sqrt{x}$, in the listed
	order, would result in the graph of $f(x) = 2 - \sqrt{4 + 5x}$. Be precise: give the direction
	(right, left, up or down) and the number of units for a shift, the scaling factor for scaling
	(ex: shift up of 3 units, or scale by a factor of 10).

HORIZONTALLY:

1): The new function is : y =


2): The new function is : y =

VERTICALLY:

3): The new function is : y =

4): The new function is: y =

Now draw the graphs, in the same order, for the functions you obtained in the steps above. Mark the values of x intercepts (if any) on the x axis and the lowest and biggest y values and y intercepts (if any) on the y axis.

- 3. Consider the function $h(x)=2-\sqrt{4+5x}$. (This is similar to the function in the previous problem, but in this problem the domain of \sqrt{x} is the usual $x\geq 0$).
 - (a) Find the domain and range of h.

$$\mathsf{DOMAIN} =$$

$$\mathsf{RANGE} =$$

(b) Compute the inverse function $h^{-1}(y).$ Show all steps. Indicate the domain for the inverse function.

(c) Compute $h(h(-\frac{4}{5}))$