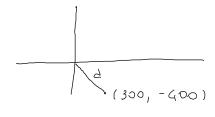
Math 120 (Pezzoli)
Spring 2019
Midterm #1

Name	
TA:	

Section:

Instructions:

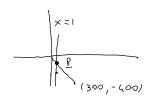

- Your exam contains 2 problems.
- Your exam should contain & pages; please make sure you have a complete exam.
- Box in your final answer when appropriate.
- ullet Unless stated otherwise, you \mathbf{MUST} show work for credit. No credit for answers only. If in doubt, ask for clarification.
- Your work needs to be neat and legible.
- \bullet You are allowed one 8.5×11 sheet of notes (both sides).
- The only calculator allowed is the Ti-30x IIS.
- Round off your answers to 3 decimal places, unless you are asked for exact answers.

Problem #1 (20 pts) _____

Problem #2 (20 pts) _____

TOTAL (40 pts)

- 1. A United Airlines plane is flying in a straight line towards a control tower with a speed of 250 mi/hour. At time t=0 it is located 300 mi East and 400 mi South of the control tower. Use a coordinate system with the origin at the control tower.
 - (a) Find the parametric equations of motion for the United Airlines plane.


$$\sqrt{300^2 + (-400)^2} = 500$$

UA plane reaches control
tower at
$$t = \frac{500}{250} = 2$$

$$V_{x} = \frac{0 - 300}{2} = -150$$
, $V_{y} = \frac{0 - (-400)}{2} = 200$

parametric equations ere:

(b) An American Airlines plane is flying North at a speed of v mph. At time t=1 it is located 100 mi East and 160 mi South of the control tower. It flies at the same altitude as the United Airlines plane. For which value of v do the two planes collide?

Method 1: the paths of the two flanes intersect at a point
$$ext{l} (100, 3)$$
 to find $ext{l} (100, 3)$ to find $ext{l} (300, -400)$ $ext{l} (300, -400)$

The parametric equations of AA plane

$$x = 100$$

 $y = -160 + v(t-1)$ so we need $-\frac{400}{3} = -160 + v(\frac{6}{3}-1)$, $\frac{480-400}{3} = \frac{1}{3}$
 $v = 80$ mph

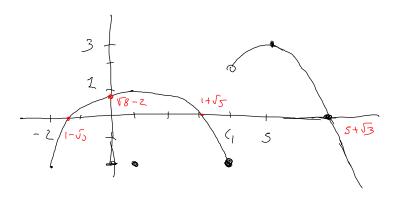
Method 2: Find equation of path of UA plane $y = -\frac{G}{3} \times \frac{1}{3}$ Find equation of path of AA plane: x = 100. Find intersection if $(100, -\frac{400}{3})$, find time UA plane reaches f $\sqrt{\frac{(400)^2 + (100-300)^2}{3} + \frac{4}{3}}$ to reach P at time $t = \frac{G}{3}$ AA plane needs to $\frac{80}{3}$ Cover a distance of $\sqrt{\left(-\frac{400}{3} + 160\right)^2 + 0} = \frac{80}{2}$ in $t = \frac{4}{3} - 1 = \frac{1}{3}$ so $v = \frac{\frac{80}{3}}{1} = 80$ (problem 1 continued)

(c) If the speed of the American Airlines plane is 240 mph (instead of the value v you found in part (b)), when are the two planes closest? How close do they get?

$$d(\cdot t) = \sqrt{(300 - 150t - 100)^2 + (400 + 200t - (-160+240(t-1)))^2}$$

$$= \sqrt{(200 - 150t)^2 + (-40t)^2}$$

$$= \sqrt{(150^2 + 40^2)t^2 - 400 \cdot 150t + 150^2}$$


planes ere closest when
$$t = \frac{400.150}{2(150^2 + 40^2)} = \frac{300}{241} \approx 1.245 \text{ h}$$

$$d\left(\frac{300}{241}\right) \approx$$
 is the closest distance

2. The function f(x) is defined as follows :

$$f(x) = \begin{cases} \sqrt{9 - (x - 1)^2} - 2, & \text{if } -2 \le x \le 4\\ 3 - (x - 5)^2, & \text{if } x > 4 \end{cases}$$

(a) Draw the graph of the function

(b) Find the y intercept, and mark it on the graph you drew in part (a).

$$f(0) = \sqrt{9 - (0-1)^2} - 2 = \sqrt{8} - 2 \approx .028$$

- c) Find the range of f
- (d) Find the x intercepts and mark them on the graph you drew in part (a).

$$\sqrt{9-(x-1)^2} - 2 = 0$$

$$3 - (x-5)^2 = 0$$

$$3 = (x-5)^2$$

$$\sqrt{9-(x-1)^2} = 2$$

$$\sqrt{9-(x-1)^2} = \sqrt{3} = x-5$$

$$5+\sqrt{3} = x$$

$$5+\sqrt{3} = x$$

$$5+\sqrt{3} = x$$

$$5+\sqrt{3} = x$$

$$1+\sqrt{5} = x-1$$