Math 120 (Pezzoli)
Spring 2019
Midterm \#1
\qquad
TA:

Section \qquad

Instructions:

- Your exam contains 2 problems.
- Your exam should contain \& pages; please make sure you have a complete exam.
- Box in your final answer when appropriate.
- Unless stated otherwise, you MUST show work for credit. No credit for answers only. If in doubt, ask for clarification.
- Your work needs to be neat and legible.
- You are allowed one 8.5×11 sheet of notes (both sides).
- The only calculator allowed is the Ti-30x IIS.
- Round off your answers to 3 decimal places, unless you are asked for exact answers.

Problem \#1 (20 pts) \qquad

Problem \#2 (20 pts) \qquad

TOTAL (40 pts) \qquad

1. A United Airlines plane is flying in a straight line towards a control tower with a speed of $250 \mathrm{mi} /$ hour. At time $t=0$ it is located 300 mi East and 400 mi South of the control tower. Use a coordinate system with the origin at the control tower.
(a) Find the parametric equations of motion for the United Airlines plane.

$d=\sqrt{300^{2}+(-400)^{2}}=500$
Ja plane reaches control tower at $t=\frac{500}{250}=2$
$V_{x}=\frac{0-300}{2}=-150, v_{y}=\frac{0-(-400)}{2}=200$
parametric equations are:
(*) $\begin{aligned} & x=300-150 t \\ & y=-400+200 t\end{aligned}$
(b) An American Airlines plane is flying North at a speed of $v \mathrm{mph}$. At time $t=1$ it is located 100 mi East and 160 mi South of the control tower. It flies at the same altitude as the United Airlines plane. For which value of v do the two planes collide?

The parametric equations of $A A$ plene ere
$x=100$
$y=-160+v(t-1) \quad$ so we need $\quad-\frac{400}{3}=-160+v\left(\frac{4}{3}-1\right), \quad \frac{480-400}{3}=\frac{v \cdot 1}{3}, ~$
$V=80 \mathrm{mph}$
Method 2: Find equation of path of us plane $y=-\frac{4}{3} x$
Find equation of eth of AA plane: $x=100$. Find intersection
$P\left(100,-\frac{400}{3}\right)$, find time UA plane reaches $p \frac{\sqrt{\left(-\frac{400}{3}+400\right)^{2}+(100-300)^{2}}}{250}=\frac{4}{3}$
to reach p et time $t=\frac{4}{3}$, $A A$ plane needs to
Cover a distance of $\sqrt{\left(-\frac{400}{3}+160\right)^{2}+0}=\frac{80}{3} \quad$ in $\quad t=\frac{4}{3}-1=\frac{1}{3} \quad$ so $v=\frac{\frac{80}{3}}{\frac{1}{3}}=80$
(problem 1 continued)
(c) If the speed of the American Airlines plane is 240 mph (instead of the value v you found in part (b)), when are the two planes closest? How close do they get?

$$
\begin{aligned}
d(1 t) & =\sqrt{(300-150 t-100)^{2}+\left(-400+200 t-\left(-160 t^{2} 40(t-1)\right)\right)^{2}} \\
& =\sqrt{(200-150 t)^{2}+(-10 t)^{2}} \\
& =\sqrt{\left(150^{2}+110^{2}\right) t^{2}-400 \cdot 150 t+150^{2}}
\end{aligned}
$$

planes ere closest when $t=\frac{400 \cdot 150}{2\left(150^{2}+40^{2}\right)}=\frac{300}{241} \approx 1.245 \mathrm{~h}$

$$
d\left(\frac{300}{2 c_{1} 1}\right) \approx \text { is the closest distence }
$$

2. The function $f(x)$ is defined as follows:

$$
f(x)= \begin{cases}\sqrt{9-(x-1)^{2}}-2, & \text { if }-2 \leq x \leq 4 \\ 3-(x-5)^{2}, & \text { if } x>4\end{cases}
$$

(a) Draw the graph of the function

(b) Find the y intercept, and mark it on the graph you drew in part (a).
$f(0)=\sqrt{9-(0-1)^{2}}-2=\sqrt{8}-2 \approx .028$
c) Find the range of f

$$
(-\infty, 3]
$$

(d) Find the x intercepts and mark them on the graph you drew in part (a).

$$
\begin{array}{lr}
\sqrt{9-(x-1)^{2}}-2=0 & 3-(x-5)^{2}=0 \\
3=(x-5)^{2} \\
\sqrt{9-(x-1)^{2}}=2 & \pm \sqrt{3}=x-5 \\
9-(x-1)^{2}=c_{1} & 5+\sqrt{3}=x \\
5=(x-1)^{2} & \\
\pm \sqrt{5}=x-1 & \\
1 \pm \sqrt{5}=x
\end{array}
$$

