Math 120 A Spring 2018 Mid-Term Exam Number One
 April 19, 2018

Name: \qquad Student ID no. : \qquad
\qquad Section: \qquad

1	10	
2	10	
3	10	
4	10	
Total	40	

- Complete all four questions.
- Show all work for full credit.
- The only calculator you may use during this exam is a TI-30XIIs. All other electronic devices are not allowed, and should be turned off and put away for the duration of the exam.
- If you use a trial-and-error or guess-and-check method when an algebraic method is available, you will not receive full credit.
- You may use one, two-sided, hand-written 8.5 by 11 inch page of notes. Write your name on your notesheet and turn it in with your exam.
- You have 50 minutes to complete the exam.

1. You start bicycling from a point 33 meters due EAST of a fountain in a park and bicycle directly toward a point 56 meters due NORTH of the fountain. You bicycle at a constant speed of 13 meters per second.
(a) Impose a coordinate system with the fountain at the origin. Give the parametric equations for your location t seconds after you start bicycling.
(b) A bear starts moving at the same time that you do. t seconds after you start walking, the bear's location is given by $x=1+3 t, y=60-4 t$. Find the value of t when you are closest to the bear.
2. You are walking near the Circular Forest, which has the shape of a perfect circle with a radius of 15 km .

You begin your walk 20 km WEST and 5 km SOUTH of the center of the forest and walk directly toward the easternmost point of the forest. You walk at a constant speed of 5 $\mathrm{km} / \mathrm{hr}$.
How much time passes from the moment you enter the forest until you are at the point where you are closest to the center of the forest?
3. You have a pizza shaped as shown in the figure below (dimensions are in centimeters). You are going to make a vertical cut through the pizza. The cut will be located a distance x centimeters from the left edge.
Express the area of the pizza to the left of the cut as a multipart function of x.

4. (a) Let

$$
f(x)= \begin{cases}3 x+1 & \text { if } x \geq 1 \\ 1-x & \text { if } x<1\end{cases}
$$

Find all values of c such that $f(c)=c$.
(b) Let $g(x)=2 x^{2}-3 x$. Simplify the expression

$$
\frac{g(x+h)-g(x-h)}{h}
$$

far enough so that plugging in $h=0$ would be allowed.

