Math 120 Section A, Spring 2014 Midterm Exam Number Two: Solutions

1. (a) Start by multiplying both sides by x to get $x^{2}+3 x=15+x$. Rearrange to find $x^{2}+2 x-15=0$, so $x=-5$ or $x=3$ by the quadratic formula (or factoring).
(b) Divide by 2000 to get $2.5=x^{9}$, then take the ninth root of both sides. $x=\sqrt[9]{2.5}$, which is about 1.107.
(c) Take the natural \log of both sides to get $5 x=\ln (12)$, so $x=\ln (12) / 5 \approx 0.497$.
(d) If $\ln (3 x+2)=4$, then $3 x+2=e^{4}$, so $x=\left(e^{4}-2\right) / 3 \approx 17.533$.
2. (a) $f(f(f(2)))=f(f(0))=f(-1)=-3$, by reading the graph.
(b) The graph of $f^{-1}(x)$ is the graph of $f(x)$, reflected over the line $y=x$, as shown on the left.
(c) The graph of $f(2 x+1)$ is the graph of $f(x)$, shifted left by one and then scaled horizontally by a factor of $1 / 2$, as shown on the right.

3. Draw a table like this. v is measured in inches per second, ω in radians per second, and r in inches.

Wheel	v	ω	r
Wheel A		$2 \pi / 20$	8
Wheel B			5
Wheel C			2
Wheel D		?	9

Then, fill out the rest of the table by using $v=\omega r$ and matching values that share a box.

Wheel	v	ω	r
Wheel A	$4 \pi / 5$	$2 \pi / 20$	8
Wheel B	$4 \pi / 5$	$4 \pi / 25$	5
Wheel C	$8 \pi / 25$	$4 \pi / 25$	2
Wheel D	$8 \pi / 25$	$8 \pi / 225$	9

So Wheel D has an angular speed of $8 \pi / 225$ radians per second. Multiply by 60 and divide by 2π to get $240 / 225=48 / 45 \approx 1.0667$ RPM.
4. Okay, linear-to-linear rational function time. We want a function $f(x)=\frac{a x+b}{x+d}$ satisfying three criteria: $f(3)=120, f(6)=108$, and the horizontal asymptote is $y=60$. This leads to three equations:

$$
\frac{3 a+b}{3+d}=120 \quad \frac{6 a+b}{6+d}=108 \quad a=60
$$

Plugging the third equation into the others and simplifying gives

$$
180+b=360+120 d \quad 360+b=648+108 d
$$

Subtract the first equation from the second to get $180=288-12 d$, so $d=9$. Finally, plug that back into one of the other equations and solve for b to get $b=1260$.
So the equation is $f(x)=\frac{60 x+1260}{x+9}$, and we want to find x so that $f(x)=70$. From here the algebra is pretty straightforward and we end up with $x=63$ minutes.
5. (a) First attempt: the area of a sector with radius r and angle θ is $\frac{1}{2} r^{2} \theta$.

Oh, darn, that includes θ. Let's use the fact that the total length of the fence is 100 . What's the total length? Well, that's $r+r+r \theta$, so $2 r+r \theta=100$, so $\theta=(100-2 r) / r$. Now we can plug that back in to get $A=\frac{1}{2} r^{2}\left(\frac{100-2 r}{r}\right)$, which we can simplify to $A=-r^{2}+50 r$.
(b) We want to know the radius r that gives the maximum value to $A=-r^{2}+50 r$. That's $h=\frac{-b}{2 a}=\frac{-50}{2(-1)}=25$.

