1. (15 pts) Consider the function f(x) =3 — v2x - 1.

a) (7 pts) Compute the inverse function, f ~1(y). Show all steps. Indicate the correct domain for the inverse function.
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b) (8 pts) In this part, there is no need to show work or justify your answers. Start with the basic function

g(x) = Vx , restricted to domain 0 < x < 4.

List the graph shifts, stretches or compressions, and reflections which, when applied to the graph of g(x) = Vx
in the listed order, would result in the graph of f(x) = 3 — V2x — 1. Be precise (ex: "fist a shift up by 2 units”).

_— : - L i
Horizontally: First_QH\FT RIGHT A LN COHPRTES X =

J—_% _L
en (OMPRESS BY A TACTOROF 2 (X .L)' T RGHT \za 1

Vertically: First  [C€EY LECNON W X—GX\S

Then SHIFTT UP 2 O0WMTS

If we start with domain 0 < x < 4 for g(x) = Vx, what is the resulting domain after the above transformations?
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(7 pts) Consider the function:
y = (—0. 5)3(2+(x/3))

put it in standard exponential form, y = Ab*. Show your steps, and box your final answer.
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Then sketch its graph, and label the values of any x or y-intercepts. No need to show work.
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(13 pts) In 1990, the U.S. minimum wage was $3.80 per hour. In 1997, it was $5.15 per hour.
Assume the minimum wage grows according to an exponential model W (t), where t represents the
number of years after 1990.

a) (6 pts) Find a formula for W (t). W (L\ ' \\M.) bt
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b) (2 pts) What does the model predict for the current minimum wage? (year 2012)
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¢) (5 pts) In what year is the minimum wage expected to reach $100 per hour, according to this model?
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E_-}(IO pts) The number of doughnuts sold by a local shop depends on the amount of money spent on
advertising. If the shop spends $50, it sells an average of 200 doughnuts a day. If it spends $200 in
advertising, it sells 350 doughnuts a day. As the shop spends more and more on advertising, the number of
doughnuts sold will approach (but not reach) 600 doughnuts per day.

Assume that the number y of doughnuts sold per day is a linear-to-linear rational function of the $x spent

on advertising.

Determine how much money the shop should spend on advertising in order to sell 500 doughnuts per day.
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