These are functions:

These are *not* graphs of functions, as they fail the vertical line test:

The point A has coordinates $(-10, -14)$ (in feet), and the point B has coordinates $(0, 6)$, so the distance from A to B is given by

$$d = \sqrt{(-10 - 0)^2 + (-14 - 6)^2} = \sqrt{(-10)^2 + (-20)^2} = \sqrt{500} = 10\sqrt{5} \approx 22.36 \text{ feet}.$$

The golf ball travels at 3 feet per second, so it covers $10\sqrt{5}$ feet in $10\sqrt{5}/3 \approx 7.45$ seconds.

The circle has center $(0, 0)$ and radius 6, so it has equation $x^2 + y^2 = 36$. The line passes through $A = (-10, -14)$ and $B = (0, 6)$, so it has equation $y = 2x + 6$. These two curves intersect when

$$x^2 + (2x + 6)^2 = 6^2,$$

or when $x = 0$ (at B) or when $x = -24/5 = -4.8$. Thus the point C has coordinates $(x, y) = (-4.8, -3.6)$.
