1 (a) One way to find the amplitude A is simply to take the maximum minus the mean. The mean here is $D = 60$ (we’re told this), and the maximum is 100. This means the amplitude is $A = 100 - 60 = 40$ gallons.

(b) We’ve seen in the solution to part (a) that $A = 40$ and $D = 60$. The period is one year, or $B = 365$ days. Finally, we’re told that the time at the maximum is $t_{\text{max}} = 213$ days, so one possible phase shift is $C = t_{\text{max}} - B/4 = 121.75$ days. Thus our formula is

$$s(t) = 40 \sin \left(\frac{2\pi}{365} (t - 121.75) \right) + 60.$$

(c) Now we are asked to find $s(137)$, the amount of ice cream on day 137 (May 17th). This is simply

$$s(t) = 40 \sin \left(\frac{2\pi}{365} (137 - 121.75) \right) + 60 \approx 70.38 \text{ gallons}.$$

(d) Now we wish to solve $s(t) = 70$, or

$$70 = 40 \sin \left(\frac{2\pi}{365} (t - 121.75) \right) + 60,$$

or

$$\frac{1}{4} = \sin \left(\frac{2\pi}{365} (t - 121.75) \right).$$

Thus one (principal) solution is

$$t = \frac{365}{2\pi} \sin^{-1}(1/4) + 121.75 \approx 136.43.$$

Another solution would be one period later: $t = 136.43 + 365 = 501.43$. Other solutions can be found using the symmetry solution:

$$t = \frac{365}{2\pi} \left(\pi - \sin^{-1}(1/5) \right) + 121.75 \approx 289.57,$$

and from this we get yet another solution one period later: $t = 289.57 + 365 = 654.57$.

2 (a) I’ve added the angle ϕ in the circle to the right. From the picture, we see that $\theta + \phi = \pi$. Moreover, the triangle involving ϕ has side adjacent to ϕ has length 4 and hypotenuse has length 8. Thus $\cos(\phi) = 4/8$, or $\phi = \pi/3$. Hence $\theta = \pi - \pi/3 = 2\pi/3$.

(b) To find the length x, we look at the larger right triangle. From this triangle we see that $\sin(25^\circ) = 10/x$, or $x = 10/\sin(25^\circ) \approx 23.66$.

![Diagram](image-url)
(c) To find the length y, we have added the notation “z” in the picture. We then get two relations involving tangent from the two right triangles:

$$\tan(25^\circ) = \frac{10}{y + z} \quad \text{and} \quad \tan(42^\circ) = \frac{10}{z}.$$

Solving, we get

$$y + z = \frac{10}{\tan(25^\circ)} \quad \text{and} \quad z = \frac{10}{\tan(42^\circ)},$$

or, solving for y,

$$y = \frac{10}{\tan(25^\circ)} - \frac{10}{\tan(42^\circ)} \approx 10.34.$$

3 (a) We are asked for the linear speed v_B of wheel B. We find this using the formula $v = r\omega$ (which only applies if ω is measured in radians per time unit!). We’re given $r_B = 2$ inches, and since wheels A and B are fastened at the axle, they have the same angular velocity. Thus

$$\omega_B = \omega_A = \left(\frac{200 \text{ revs}}{\text{min}}\right) \left(\frac{2\pi \text{ rads}}{1 \text{ rev}}\right) \left(\frac{1 \text{ min}}{60 \text{ sec}}\right) = \frac{20\pi}{3} \text{ rads/sec}.$$

Thus the linear speed of wheel B is

$$v_B = (2 \text{ inches}) \left(\frac{20\pi}{3} \text{ rads/sec}\right) = \frac{40\pi}{3} \text{ in/sec} \approx 41.89 \text{ in/sec}.$$

(b) Now we’re asked for wheel C’s angular velocity. Using $v = r\omega$, we get $\omega = v/r$. Since wheels B and C are joined by a belt, they have the same linear speed: $v_C = v_B = 40\pi/3 \text{ in/sec}$. Since r_C is given as 4 inches, we get

$$\omega_C = \frac{v_C}{r_C} = \frac{40\pi/3 \text{ in/sec}}{4 \text{ in}} = \frac{10\pi}{3} \text{ rads/sec}.$$

We convert this angular speed to RPM as follows:

$$\omega_C = \left(\frac{10\pi \text{ rads}}{3 \text{ sec}}\right) \left(\frac{1 \text{ rev}}{2\pi \text{ rads}}\right) \left(\frac{60 \text{ sec}}{1 \text{ min}}\right) = 100 \text{ RPM}.$$

This is the form of the answer we want.

4 (a) The zero is when $6 - 3x = 0$, or $(x, y) = (2, 0)$. The vertical asymptote is when $x - 6 = 0$, or $x = 6$. The horizontal asymptote can be found by multiplying the top and bottom by $1/x$ and letting x go off to infinity:

$$\frac{6 - 3x}{x - 6} \cdot \frac{1/x}{1/x} = \frac{6/x - 3}{1 - 6/x} \rightarrow \frac{0 - 3}{1 - 0} = -3.$$

Thus $y = -3$ is the horizontal asymptote.

We plot the graph below, including many points (especially $(x, y) = (0, -1)$, where the curve crosses the y-axis). I’ve included dots at the following points:

$$(-10, -9/4) \quad (-6, -2) \quad (-4, -9/5) \quad (-3, -5/3) \quad (-2, -3/2) \quad (0, -1) \quad (2, 0) \quad (3, 1) \quad (4, 3) \quad (5, 9) \quad (8, -9) \quad (9, -7) \quad (10, -6) \quad (12, -5)$$

You could, of course, plot many points other than these.
(b) To find $f^{-1}(x)$, we set $y = \frac{6-3x}{x-6}$ and solve for x:

\begin{align*}
y(x-6) &= 6-3x \\
x y - 6y &= 6 - 3x \\
x (y + 3) &= 6 + 6y \\
x &= \frac{6+6y}{y+3}.
\end{align*}

Thus $f^{-1}(x) = \frac{6x+6}{x+3}$. The domain of this function is all $x \neq -3$ and the range is all $y \neq 6$.

(These are the range and domain, in that order, of the original function $y = f(x)$.)