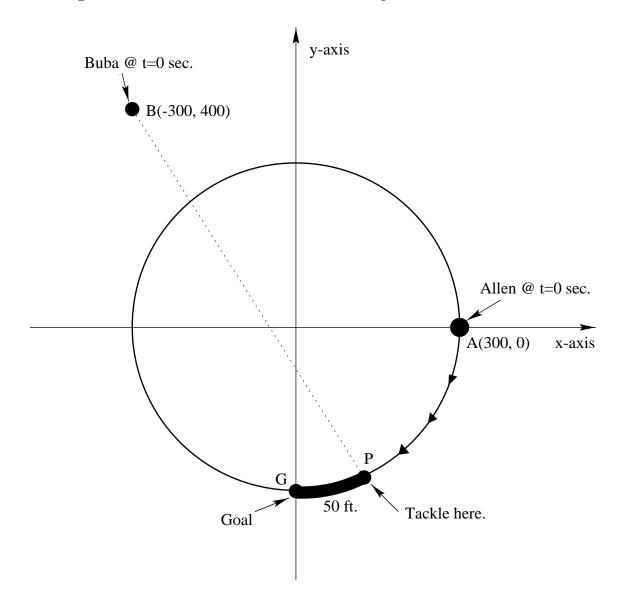
Name	Id #	Section
Math 120 Midterm	Wednesday, November 5, 1997	Page 0 of 11.

Instructions:

- 1. You have 50 minutes for this midterm exam. Show **all** your work. No credit will be given for answers only.
- 2. Put your name, student identification number, and section on each page of this exam.
- 3. Scientific or graphing calculators are allowed. Laptop computers are **not** allowed.
- 4. One $8\frac{1}{2}'' \times 11''$ sheet with notes on both sides is allowed.
- 5. When you are done, please hand your exam in to your teaching assistant.

Scores		
Problem	Possible	Earned
1	30	
2	20	
3	30	
4	20	
Total	100	

· T	T 1 //	~ ·•
Vame	Id #	


Math 120 Midterm

Wednesday, November 5, 1997

Page 1 of 11.

Problem #1:

Allen drives a soccer ball toward the goal **G** along a circular path of radius r = 300 ft. At t = 0 sec, Allen starts running in a clockwise direction from A(300,0) with an angular speed of $\omega_A = -0.04 \frac{\text{rad}}{\text{sec}}$. In the mean time, Buba starts running at t = 0 sec toward **P**, a point that is an arclength of exactly 50 ft from the goal **G**. Buba intends to tackle Allen at the point **P**.

Please answer the questions on the next page.

Name	Id #	Section
Math 120 Midterm	Wednesday, November 5, 1997	Page 2 of 11.

Problem #1, Continued:

1.1 (15) What are the coordinates of the tackle point **P**?

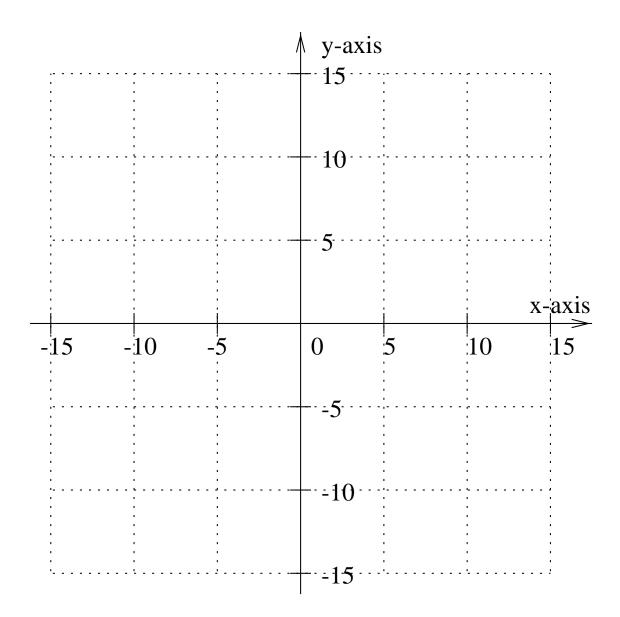
1.2 (10) When must the tackle take place?

1.3 (5) How fast must Buba run to tackle Allen?

Name	Id #	Section
------	------	---------

Math 120 Midterm

Wednesday, November $5,\,1997$


Page 3 of 11.

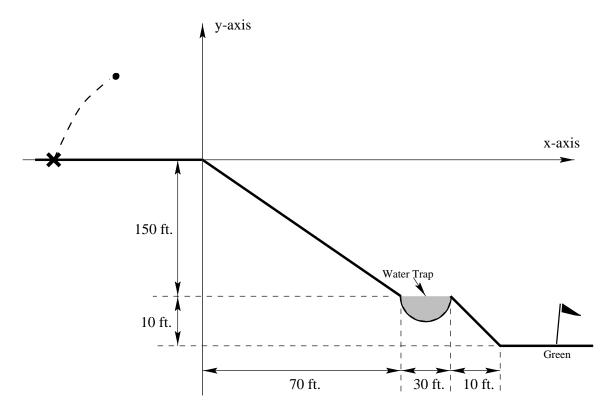
Problem #2:

2.1 (10) Let $f(x) = 2 - 2x - \frac{1}{3}x^2$. Find all the inverse functions for y = f(x).

Problem #2, Continued:

2.2 (10) Sketch and label the original function, y = f(x), and its inverses in the xy-coordinate system below.

Math 120 Midterm


Wednesday, November 5, 1997

Page 5 of 11.

Problem #3:

Tiger Woods hits a golf ball from the spot marked X pictured below. The golf ball has a trajectory given by

 $T(x) = -\frac{1}{50}x^2 + \frac{1}{25}x + \frac{2,499}{50}.$

Note: This sketch is not to scale.

3.1 (5) Where is the ball when it is first hit by Tiger Woods?

Problem #3, Continued:

3.2 (5) Where is the vertex of the ball's path?

3.3 (10) What is the maximum height of the ball above the slope where $0 \le x \le 70$?

3.4 (10) Does the ball land in the water trap? Explain your answer.

Name______ Id #_____ Section____

Math 120 Midterm

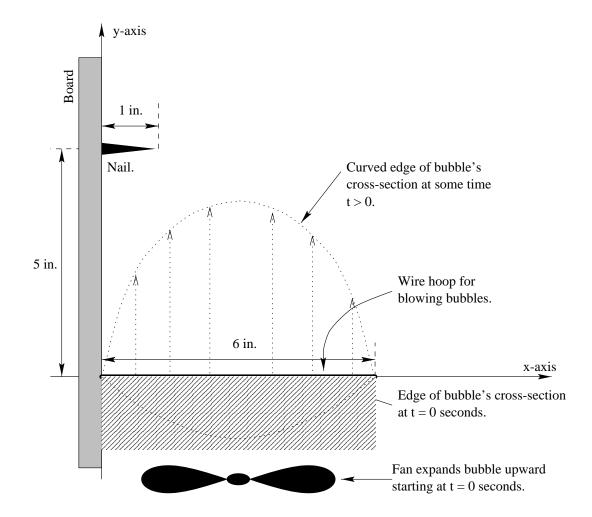
Wednesday, November 5, 1997

Page 7 of 11.

Problem #4:

A wire hoop for blowing soap bubbles is attached to a board. Five inches above the hoop, a sharp nail protrudes out over the hoop. At t = 0 sec a soap bubble droops down below the hoop, a small fan is turned on, and the fan gently expands the bubble upward. Pictured below is a cross-section showing the fan, soap bubble, the board, and the nail at t = 0 sec.

At t = 0 sec, the curved edge of the bubble's cross-section is described by


$$f(x) = \frac{2}{9}x(x-6),$$

where $0 \le x \le 6$.

The vertical dilation of the bubble varies with time t. At a given time t, the dilation is described by

$$c(t) = (1+t)(1-t),$$

where $t \geq 0$.

Name	Id #	Section
Math 120 Midterm	Wednesday, November 5, 1997	Page 8 of 11.

Problem #4, Continued:

4.1 (5) Briefly describe how c(t) affects the shape of the bubble's cross-section.

4.2 (5) What is the bubble's cross-section at $t = 1 \sec$?

4.3 (10) As the bubble expands, it hits the nail's sharp point and bursts. When does the bubble burst?

Name	Id #	Section
Math 120 Midterm	Wednesday, November 5, 1997	Page 9 of 11.

Blank Page

Name	Id #	Section
Math 120 Midterm	Wednesday, November 5, 1997	Page 10 of 11.

Blank Page