Math 120 C - Autumn 2017 Midterm Exam Number One October 19th, 2017

Name: \qquad Student ID no. : \qquad
\qquad Section: \qquad

1	15	
2	15	
3	15	
4	15	
Total	60	

- This exam consists of FOUR problems on FIVE pages, including this cover sheet.
- Show all work for full credit.
- You may use a TI-30X IIS calculator during this exam. Other calculators and electronic device are not permitted.
- You do not need to simplify your answers.
- If you use a trial-and-error or guess-and-check method when a more rigorous method is available, you will not receive full credit.
- If you write on the back of the page, please indicate that you have done so!
- You may use one hand-written double-sided $8.5^{\prime \prime}$ by $11^{\prime \prime}$ page of notes.
- You have 50 minutes to complete the exam.

1. [15 points] Alex is at the northernmost point of a circular parking lot with radius 26 feet. Dylan stands 22.4 feet west and 27 feet south of the southernmost point of the parking lot. Dylan walks due north until he hits the edge of the parking lot. Then, he turns and walks in a straight line towards the easternmost point of the parking lot.

How close does Dylan get to Alex?

2. [5 points per part] Chide and Tahani are walking around the coordinate plane.

Chide begins at the point $(6,-4)$ and walks towards $(-2,2)$ in a straight line at constant speed, reaching it in 10 seconds.
Tahani begins at the point $(5,8)$ and also walks in as straight line at constant speed.
One second after Chidi crosses the y-axis, Tahani also crosses the y-axis at the same place.
(a) Write parametric equations for Chidi's coordinates after t seconds.

$$
\begin{array}{lll}
x_{0}=6 & y_{0}=-4 & \\
x_{1}=-2 & y_{1}=2 & x=6-\frac{8}{10} t \\
\Delta x=-8 & \Delta y=6 & y=-4+\frac{6}{10} t \\
\Delta t=10 &
\end{array}
$$

or

$$
\begin{aligned}
& x=6-\frac{4}{5} t \\
& y=-4+\frac{3}{5} t
\end{aligned}
$$

(b) Where and when does Chili cross the y-axis?

(c) What is Tahani's speed?

3. Consider the following multipart function f :

$$
f(x)= \begin{cases}-2 x-5 & \text { if }-4 \leq x<-1 \\ -1 & \text { if }-1 \leq x \leq 2 \\ 1+\sqrt{4-(x-2)^{2}} & \text { if } 2<x \leq 4\end{cases}
$$

(a) [7 points] Sketch a graph of $f(x)$ below.

$$
\begin{gathered}
\sim_{\text {right-half of an upper }}^{\text {semicirde }}
\end{gathered}
$$

(b) [8 points] Find all values of x such that $f(x)=\frac{1}{2} x+1$.
from this red line we expect two answers.

\downarrow

$$
\begin{gathered}
f \quad-4 \leq x<-1 \\
-2 x-5=\frac{1}{2} x+1 \\
-2.5 x=6 \\
x=-2.4
\end{gathered}
$$

$$
\text { if }-1 \leq x \leq 2 \rightarrow \text { if } 2<x \leq 4
$$

$$
\begin{gathered}
1+\sqrt{4-(x-2)^{2}}=\frac{1}{2} x+1 \\
4-(x-2)^{2}=\frac{1}{4} x^{2}
\end{gathered}
$$

Nope

$$
0=\frac{5}{4} x^{2}-4 x
$$

$$
50: x=-2.4 \text { or } 3.2
$$

$$
0=x\left(\frac{5}{4} x-4\right)
$$

4. The temperature in Paraboland is modeled by a quadratic function of time. Right now, the temperature is 20°.
In 2 days, the temperature will be 27°.
In 10 days, the temperature will be 51°.
(a) [12 points] Write a function $f(x)$ for the temperature in Paraboland x days from now.

$$
\begin{aligned}
& f(x)=a x^{2}+b x+c \\
& f(0)=20 \rightarrow 20=c \\
& f(2)=27 \rightarrow 27=4 a+2 b+c \rightarrow \begin{array}{l}
-5(7=4 a+2 b) \\
f(10)=51=100 a+10 b+c \rightarrow+31=100 a+10 b \\
-4=80 a
\end{array} \\
& 7=4(-0.05)+2 b \\
& a=\frac{-4}{80}
\end{aligned}
$$

$$
f(x)=-0.05 x^{2}+3.6 x+20
$$

(b) [3 points] What will the maximum temperature be?

$$
k \uparrow k=c-\frac{b^{2}}{4 a}=20-\frac{(3.6)^{2}}{4(-0.05)}=84.8
$$

