Your Name
\square
Student ID \#

\square

	Charlie		Jonathan	
Section	$11: 30$	$12: 30$	$11: 30$	$12: 30$
(circle one)	CA	CB	CC	CD

Problem	Total Points	Score
1	13	
2	13	
3	12	
4	12	
Total	50	

- This exam is closed book. You may use one $8 \frac{1}{2} \times 11$ sheet of notes.
- Do not share notes.
- You may use a calculator, but it must be a Texas Instruments TI-30X IIS.
- In order to receive credit, you must show your work. Do not do computations in your head or only on your calculator. Instead, write them out on the exam paper.
- Place a box around YOUR FINAL ANSWER to each question.
- If you use a trial and error (or guess and check) method when an algebraic method is available, you will not receive full credit.
- If you need more room, use the backs of the pages and indicate to the reader that you have done so.
- Raise your hand if you have a question.

1 (12 points) Let $f(x)=x^{2}-5 x$ and $g(x)=|3-2 x|$
(a) (7 points) Simplify the expression $\frac{f(x+h)-f(x)}{h}$ far enough so that plugging in $h=0$ would be allowed.
(b) (6 points) Find all solutions to the equation $g(x)=3 x-7$.

2 (13 points) Clovis and Isobel are standing on Broadway, 30 feet South of the intersection with Aloha St. Clovis starts walking North at a constant rate of 5 feet/second. When he reaches the intersection, he turns West and continues at the same speed down Aloha St. Isobel does not move.
(a) (7 points) Give a multi-part function for the distance between Clovis and Isobel as a function of time. Use units of feet and seconds.
(b) (6 points) When are they 50 feet apart?

3 (12 points) Tafu is sailing near a radar buoy which can detect anything within 9 km of the buoy. He starts sailing from a point 7 km West and 11 km North of the buoy. He sails South for one hour, then turns and sails East for 30 km .
He sails at a constant speed of $6 \mathrm{~km} / \mathrm{hr}$.
How much time was he within 9 km of the buoy?

4 (12 points) Winfield is moving linearly in the $x y$-plane at a constant speed. He starts from the point $(3,-1)$ and moves along the line $y=-2 x+5$ at a speed of 3 units per second, heading toward the y-axis.
(a) (6 points) Write parametric equations for Winfield's location t seconds after starting.
(b) (6 points) At what time is Winfield closest to the origin?

