Math 120 B,C,D - Autumn 2013 Midterm Exam Number Two Solutions

1. (a) The number of copies Jessa sells is a linear function of the price per copy, and using the two points we get that it's given by the equation $n(x)=230-3 x$. The total amount of money she gets is the number of copies multiplied by the price (x), so we get a solution of $f(x)=x(230-3 x)=-3 x^{2}+230 x$.
(b) The previous solution is a downward-pointing parabola, so we want the x-coordinate of the vertex, which is $x=h=-b /(2 a)=-230 /(-6) \approx \$ 38.33$.
2. (a) $f(g(x))=f\left(e^{x}+3\right)=\sqrt{e^{x}+3}+2\left(e^{x}+3\right)$.
(b) We set $x=\sqrt{y}+2 y$ and attempt to solve for y. First, subtracting y and squaring yields
$y=x^{2}-4 x y+4 y^{2}$, so $4 y^{2}+(-4 x-1) y+x^{2}=0$. Using the quadratic formula gives

$$
y=\frac{4 x+1 \pm \sqrt{(-4 x-1)^{2}-16 x^{2}}}{8}=\frac{4 x+1 \pm \sqrt{1+8 x}}{8}
$$

This isn't quite a function yet, because the \pm in the numerator means we have two values of y for every x. We need to determine whether it should be $\mathrm{a}+$ or $\mathrm{a}-$.
Now, in the original function, $f(0)=0$, so in the inverse function, we also want $f^{-1}(0)=0$. The only way the above function is zero when $x=0$ is if we're subtracting, so we've got:

$$
f^{-1}(x)=\frac{4 x+1-\sqrt{1+8 x}}{8}
$$

(c) $h(x)=2(\sqrt{x}+2 x)-3$.
3. (a) Catoma's initial population is 10,000 and it grows by 40% every 8 years, so its population is given by $c(t)=10000 \cdot(1.4)^{t / 8}$.
(b) Vellebue's population doubles every 15 years, so its population is given by $P \cdot 2^{t / 15}$ for some P. From part (a), we can determine that Catoma's population in 2006 was $10000 \cdot(1.4)^{16 / 8}=19600$, so in 2006, Vellebue's population was $19600 / 4=4900$. That means $4900=P \cdot 2^{16 / 15}$, so $P=4900 /\left(2^{16 / 15}\right) \approx 2339$, which means the population of Vellebue after t years is $v(t)=2339 \cdot 2^{16 / 15}$.
(c) We solve $150000=2339 \cdot 2^{t / 15}$ by taking the log of both sides and simplifying to get $t \approx 90$ years after 1990, so the population will reach 150000 in 2080.
4. (a) We're looking for a function of the form $f(x)=\frac{a x+b}{x+d}$. We know that $f(0)=40$, $f(100)=85$, and $a=130$. Combining the first and third equations tell us that $40=b / d$, so $b=40 d$. The second equation tells us that $85=(13000+b) /(100+d)$, so $8500+85 d=13000+40 d$, so $d=4500 / 45=100$, and $b=4000$.
So $f(x)=\frac{130 x+4000}{x+100}$.
(b) In 2050, the population will be $f(150)=94$ million.

