FINDING SOLUTIONS TO STUFF

- 1. Graph the function $y = \sin(x)$ (where x is in radians, of course).
- 2. Find all the solutions to $\frac{3}{4} = \sin(x)$ by the following steps:
- (a) Draw the line $y = \frac{3}{4}$ on the graph. Get a good guess where the solutions should be.
- (b) Find the principal solution of the equation $\frac{3}{4} = \sin(x)$ using the \sin^{-1} function on your calculator

(c) Find the symmetry solution to the principal solution. (It might help to sketch sine.)

- (d) Find all the solutions to $\frac{3}{4} = \sin(x)$. Use the $2\pi n$ notation we talked about in class.
- 3. Graph the function $y = 3\cos(2(x-1))$.
- 4. Find all the solutions to $2 = 3\cos(2(x-1))$ by the following steps:
- (a) Draw the line y=2 on the graph. Get a good guess where the solutions should be.
- (b) Forget x for now. Find the principal solution of the equation $2 = 3\cos(\theta)$ using the \cos^{-1} function on your calculator.

(c) Find the symmetry solution to the principal solution. (It might help to sketch cosine.)

(d) Find all the solutions to $2 = 3\cos(\theta)$. Use the $2\pi n$ notation we talked about in class.

(e) Plug in 2x-1 for θ in the forms you found in (d). Solve for x.

5. Following the steps above find all solutions to the equation $-13 = 5 \tan(\pi (x+1)^3)$. You don't have to graph the function. The graph is here to help you if you want.

Remember that tangent is π -periodic, not 2π .

