1. (a) (3 points) $\frac{d y}{d x}=16(3+x \ln (x))^{15}\left(x \cdot \frac{1}{x}+\ln (x)\right)$
(b) (3 ponts) $A^{\prime}(2)=\frac{2^{2}}{4+2}=\frac{4}{6}=\frac{2}{3}$
(c) $(2$ points $) \mathrm{ii}$
2. (a) (3 points) $\int\left(\frac{4}{7 x}+1000 e^{0.01 x}\right) d x=\frac{4}{7} \ln x+100000 e^{0.01 x}+C$
(b) (3 points) $\int(2 x-5)^{2} d x=\int\left(4 x^{2}-20 x+25\right) d x=\frac{4}{3} x^{3}-10 x^{2}+25 x+C$
(c) (4 points) $\int_{1}^{25} 6 \sqrt{x}-\frac{3}{2 \sqrt{x}} d x=484$
3. (a) (2 points) $t=7,12,17$
(b) (2 points) $t=3,10,14,19$
(c) (2 points) $t=3$ minutes
(d) (2 points) $t=10$ minutes
(e) (3 points) 1.25 feet per minute
(f) (1 point) from $t=5$ to $t=9$ minutes (3 points) ~ 14.75 feet
(g) (4 points) from $t=0$ to $t=3$, altitude is decreasing and concave up; from $t=7$ to $t=10$, altitude is increasing and concave down.
4. (a) (3 points) Total revenue has a local max at $q=331$ Objects.
(b) (3 points) Total cost has a point of inflection at $q=10$ Objects.
(c) (2 points) Profit is maximized at $q=30$ Objects.
(d) (5 points) $F C=\$ 5735$
