Name \qquad
Student ID \# \qquad Section \qquad

HONOR STATEMENT

"I affirm that my work upholds the highest standards of honesty and academic integrity at the University of Washington, and that I have neither given nor received any unauthorized assistance on this exam."

SIGNATURE:

1	8	
2	10	
3	19	
4	13	
Total	50	

- Check that your exam contains 4 problems on 5 pages.
- You are allowed to use a TI-30XIIS calculator, a ruler, and one sheet of hand-written notes. All other sources are forbidden.
- Do not use scratch paper. If you need more room, use the back of the page and indicate to the grader you have done so.
- Turn your cell phone OFF and put it away for the duration of the exam.
- You may not listen to headphones or earbuds during the exam.
- You must show your work. Clearly label lines and points that you are using and show all calculations. The correct answer with no supporting work may result in no credit.
- If you use a guess-and-check method when an algebraic method is available, you may not receive full credit.
- When rounding is necessary, you may round your final answer to two digits after the decimal.
- There are multiple versions of the exam, you have signed an honor statement, and cheating is a hassle for everyone involved. DO NOT CHEAT.
- Put your name on your sheet of notes and turn it in with the exam.

1. (8 points)
(a) Compute the derivative of $y=(3+x \ln (x))^{16}$. DO NOT SIMPLIFY.

Put a box around your answer.
(b) Let $A(m)=\int_{0}^{m} \frac{x^{2}}{4+x} d x$. Compute the value of $A^{\prime}(2)$.

Put a box around your answer.
(c) Which of the following is an anti-derivative of the function

$$
g(x)=\left(e^{5 x}+x^{3}\right)^{9}\left(5 e^{5 x}+3 x^{2}\right) ?
$$

i. $G(x)=\left(e^{5 x}+x^{3}\right)^{10}$
ii. $G(x)=\frac{1}{10}\left(e^{5 x}+x^{3}\right)^{10}$
iii. $G(x)=\left(\frac{1}{5} e^{5 x}+\frac{1}{4} x^{4}\right)^{9}\left(e^{5 x}+x^{3}\right)$
iv. none of the above
\qquad
2. (12 points) Compute the integral. Put a box around your answer.
(a) $\int\left(\frac{4}{7 x}+1000 e^{0.01 x}\right) d x$
(b) $\int(2 x-5)^{2} d x$
(c) $\int_{1}^{25} 6 \sqrt{x}-\frac{3}{2 \sqrt{x}} d x$
3. (19 points) The altitude of a balloon is given by the function $A(t)$. The graph below shows $r(t)=A^{\prime}(t)$, the instantaneous rate of ascent of the balloon as it rises and falls for 19 minutes.

(a) Name all times at which the graph of $r(t)$ has horizontal tangents.

ANSWER: (list all) $t=$
(b) Name all times at which the graph of $A(t)$ has horizontal tangents.

ANSWER: (list all) $t=$ \qquad minutes
(c) Name the time in the first 10 minutes when the balloon is at its lowest altitude.

ANSWER: $t=$ \qquad minutes
(d) Name the time in the first 10 minutes when the balloon is at its highest altitude.

ANSWER: $t=$ \qquad minutes
(e) Compute the balloon's average rate of ascent from $t=3$ to $t=5$.
\qquad feet per minute

Here is the graph of the balloon's rate of ascent again.

(f) Find the four-minute interval during which the balloon gains the most altitude.

ANSWER: from $t=$ \qquad to $t=$ \qquad minutes How much altitude does the balloon gain during this four-minute interval?

ANSWER: \qquad feet
(g) For each of the following intervals, determine whether the graph of altitude is increasing or decreasing and concave up or concave down. If it is impossible to determine from the information give, circle CAN'T TELL.

from $t=0$ to $t=3$	increasing	decreasing	CAN'T TELL
concave up	concave down	CAN'T TELL	
from $t=7$ to $t=10$	increasing	decreasing	CAN'T TELL
concave up concave down CAN'T TELL			

4. (13 points) You sell Objects. Your marginal revenue and marginal cost are given by

$$
M R(q)=1324-4 q \quad M C(q)=3 q^{2}-60 q+304
$$

(q is measured in Objects and $M R$ and $M C$ in dollars per Object.)
(a) Find all critical values of total revenue and determine whether each gives a local maximum or a local minimum of total revenue. Put a box around your answer(s).
(b) Find all quantities at which the graph of total cost has a point of inflection. If it has no points of inflection, write NONE.
\qquad Objects
(c) Find the quantity that maximizes profit.
\qquad Objects
(d) The maximum possible profit for selling Objects is $\$ 23,065$. Find Fixed Cost.
\qquad

