Name: $\qquad$
Section: $\qquad$
Student ID Number: $\qquad$

| 1 | 13 |  |
| :---: | :---: | :--- |
| 2 | 12 |  |
| 3 | 12 |  |
| 4 | 13 |  |
| Total | 50 |  |

- After this cover page, there are 4 problems spanning 4 pages. Please make sure your exam contains all of this material.
- You are allowed to use a Ti-30x IIS Calculator model ONLY (no other calculators allowed). And you are allowed one hand-written 8.5 by 11 inch page of notes (front and back).
- You must show your work on all problems. The correct answer with no supporting work may result in no credit.
- If you use a guess-and-check, or calculator, method when an algebraic method is available, you may not receive full credit.
- If you need more room, use the backs of the pages and indicate to the grader that you have done so.
- Raise your hand if you have a question.
- There are multiple versions of the exam so if you copy off a neighbor and put down the answers from another version we will know you cheated. Any student found engaging in academic misconduct will receive a score of 0 on this exam. All suspicious behavior will be reported to the academic misconduct board. Sit far away from your study partners and keep your eyes down, don't risk a zero on this exam!
- You have 50 minutes to complete the exam. Budget your time wisely.

SPEND NO MORE THAN 10 MINUTES PER PAGE!

1. (13 pts) Put a box around your final answer. You do not have to simplify.
(a) Find $y^{\prime}$ for $y=\left(\ln \left(t^{3}+1\right)\right)^{10}$
(b) Find $f^{\prime}(x)$ for $f(x)=\frac{1}{2}+3 x+\frac{5}{6 e^{\sqrt{x}}}$
(c) Find the general anti-derivative: $\int \frac{\sqrt{x}}{5}-3 e^{2 x} d x$
(d) Evaluate $\int_{1}^{2} x\left(\frac{12}{x^{3}}+\frac{3}{x}\right) d x$
2. (12 pts) Two balloons are at the same height at $t=0$. Time, $t$, is measured in minutes and height is measured in feet. You are given:

$$
\begin{array}{lll}
A^{\prime}(t)=15-\frac{5 t}{2} & \text { feet } / \mathrm{min} & =\text { 'RATE of ascent for balloon } \mathrm{A} ' \\
B(t)=\frac{1}{3} t^{3}-5 t^{2}+24 t+30 & \text { feet } & =\text { 'HEIGHT for balloon } \mathrm{B} '
\end{array}
$$

(a) Use the fact that $A(0)=B(0)$ to find the formula for $A(t)$ without any undetermined constants.

$$
A(t)=
$$

$\qquad$
(b) Give an interval over which the graph of the height of Balloon B is concave down.

$$
t=
$$

$\qquad$ to $t=$ $\qquad$
(c) Find all times at which Balloon B changes from falling to rising.

$$
t=
$$

$\qquad$ min
(d) Find the lowest and highest altitudes reached by Balloon A from $t=0$ to $t=10$.
'lowest altitude' = $\qquad$ feet
'highest altitude' = $\qquad$ feet
3. (12 pts) You sell items. The functions for marginal revenue and marginal cost (in dollars/item) are given by

$$
M R(q)=7 e^{0.02 q} \text { and } M C(q)=q^{2}-12 q+124
$$

where $q$ is in thousands of items. You are also told that Fixed Costs are given $F C=15$ thousand dollars (so $T C(0)=15)$.
(a) Give the functions for Total Revenue and Total Cost (solve for the constants of integration).

$$
T R(q)=
$$

$\qquad$

$$
T C(q)=
$$

$\qquad$
(b) Find the largest and smallest values of Marginal Cost on the interval $q=0$ to $q=10$.

$$
\begin{aligned}
& \text { 'smallest value of } M C^{\prime}=\_ \text {dollars/item } \\
& \text { 'largest values of } M C^{\prime}=\square \text { dollars/item }
\end{aligned}
$$

(c) Recall: $A C(q)=\frac{T C(q)}{q}$.

Determine if $A C(q)$ is concave up, concave down, or neither at $q=1$ thousand items. (You must show appropriate derivatives and make correct conclusions to get full credit).
4. (13 pts) The graph below shows the rate of ascent, $r(t)$, at time $t$ for a hot-air balloon. Let $A(t)$ be the function for the height (in feet) of the hot-air balloon at time $t$ minutes. As a reminder, the picture below is the graph of $r(t)=A^{\prime}(t)$ which is the derivative of the altitude function!!


Use the picture to estimate the answers to the questions below as accurately as possible.
(a) Estimate the following:
i. $\int_{0}^{4} r(t) d t=$
ii. $\int_{3}^{7} r(t) d t=$
iii. $A^{\prime \prime}(4)=$
(b) Find all critical values of $A(t)$ (estimate from the picture).

$$
t=
$$

$\qquad$ min
(c) Give the longest interval of time over which the graph of $A(t)$ is concave up (remember the picture above is $\left.A^{\prime}(t)\right)$.

$$
t=
$$

$\qquad$ $\min$ to $t=$ $\qquad$ min
(d) At time $t=0$, assume the balloon is 20 feet high. Give the time and the corresponding altitude at which the balloon is highest in the first 7 minutes.

$$
\begin{aligned}
& t= \\
& \max \text { height }=\longmapsto \\
& \min \\
& \text { feet }
\end{aligned}
$$

