Name \qquad
Student ID \# \qquad Section \qquad

HONOR STATEMENT

"I affirm that my work upholds the highest standards of honesty and academic integrity at the University of Washington, and that I have neither given nor received any unauthorized assistance on this exam."

SIGNATURE:

1	12	
2	12	
3	12	
4	14	
Total	50	

- Check that your exam contains 4 problems.
- You are allowed to use a TI-30XIIS calculator, a ruler, and one sheet of hand-written notes. All other sources are forbidden.
- Do not use scratch paper. If you need more room, use the back of the page and indicate to the grader you have done so.
- Turn your cell phone OFF and put it away for the duration of the exam.
- You may not listen to headphones or earbuds during the exam.
- You must show your work. Clearly label lines and points that you are using and show all calculations. The correct answer with no supporting work may result in no credit.
- If you use a guess-and-check method when an algebraic method is available, you may not receive full credit.
- When rounding is necessary, you may round your final answer to two digits after the decimal.
- There are multiple versions of the exam, you have signed an honor statement, and cheating is a hassle for everyone involved. DO NOT CHEAT.
- Put your name on your sheet of notes and turn it in with the exam.

1. (12 points)

(a) Compute the derivative. You do not need to simplify.
i. $y=\ln \left(3 x^{2}-4+\frac{1}{x}\right)$
ii. $w=\frac{e^{20 u}}{u+7}$
(b) Compute the integral. Place a box around your final answer.
i. $\int \frac{5}{\sqrt{x^{3}}}+e^{x / 4} d x$
ii. $\int_{1}^{e^{2}} \frac{3}{2 t} d t$
2. (12 points) Two hot air balloons are rising and falling.

The altitude (in feet) of the Red Balloon after t minutes is given by

$$
R(t)=-20 t^{2}+240 t+600
$$

The rate of ascent (in feet per minute) of the Green Balloon after t minutes is given by

$$
g(t)=-6 t^{2}+18 t+240 .
$$

(a) During the time interval from $t=5$ to $t=10$, what is the lowest altitude the Red Balloon reaches?

ANSWER: \qquad feet
(b) Find the instant (the positive value of t) at which the Green Balloon stops rising and begins to fall.

ANSWER: $t=$ \qquad minutes
(c) At $t=0$, the Green Balloon is 126 feet higher than the Red Balloon. Find the formula for $G(t)$, the altitude (in feet) of the Green Balloon after t minutes.

ANSWER: $G(t)=$ \qquad
(d) How high is the Red Balloon when the Green Balloon is rising most rapidly?
\qquad feet
3. (12 points) Let $f(x)=4 x^{3}-42 x^{2}-360 x+25$.
(a) Find all critical values of $f(x)$. (Your answers may be positive or negative.)

ANSWER: (list all) $x=$ \qquad
(b) Use the Second Derivative Test to determine whether each of the critical values you found in part (a) gives a local maximum or a local minimum of f.

$$
\text { ANSWER: } \begin{aligned}
x & =_ \text {gives a local (circle one) } & \max & \min \\
x & =_\quad \text { gives a local (circle one) } & \max & \min
\end{aligned}
$$

(c) Give the longest interval on which f is decreasing and concave up. If no such interval exists, circle NONE.
\qquad to $x=$ \qquad or NONE
4. (14 points) You sell Things. Your profit (in dollars) for selling q Things is given by a function $P(q)$. The graph below shows the marginal profit $M P(q)$ in dollars per Thing. Recall that marginal profit is the derivative of profit. That is, the graph below is the graph of $P^{\prime}(q)$.

YOU DO NOT NEED TO SHOW ANY WORK FOR THIS QUESTION.

For questions (a)-(e), if there is no such quantity or interval, circle the word NONE.
(a) Name the longest interval on which the graph of marginal profit is increasing.

ANSWER: from $q=$ \qquad to $q=$ \qquad or

NONE
(b) Name the longest interval on which the graph of profit is increasing.

ANSWER: from $q=$ \qquad to $q=$ \qquad or
NONE
(c) Name the longest interval on which the graph of $P^{\prime \prime}(q)$ is increasing.

ANSWER: from $q=$ \qquad to $q=$ \qquad or

NONE
(d) Name all quantities at which profit has a local maximum.

ANSWER: (list all) $q=$ \qquad or
NONE
(e) Name all quantities at which marginal revenue is equal to marginal cost.

ANSWER: (list all) $q=$ \qquad or
(f) If quantity changes from $q=0$ to $q=4$, does profit increase or decrease? By how much?

ANSWER: profit will (circle one) increase decrease by $\$$ \qquad
(g) Your fixed costs are $\$ 45$. What is $P(2)$?
\qquad

