Solutions to Math 112 Spring 2017, Midterm I

1. (a) $\frac{f(7)-f(4)}{7-4}=\frac{f(4+3)-f(4)}{3}=\frac{4 \cdot 3+3^{2}-3 \cdot 3}{3}=4$.
(b) $f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}=\lim _{h \rightarrow 0} \frac{x h+h^{2}-3 h}{h}=\lim _{h \rightarrow 0} x+h-3=x-3$. So, $f^{\prime}(4)=4-3=1$.
(c) $\frac{f(3)-f(0)}{3-0}=\frac{f(0+3)-f(0)}{3}=\frac{0 \cdot 3+3^{2}+3 * 3}{3}=0$. so $f(3)-(-2)=0$ and $f(3)=-2$.
2. (a) $f^{\prime}(x)=-\frac{14}{x^{3}}+\frac{2}{\sqrt{x}}$
(b) $f^{\prime}(x)=7\left(\frac{4 x-7}{x^{3}+1}\right)^{6} \frac{4\left(x^{3}+1\right)-(4 x-7) 3 x^{2}}{\left(x^{3}+1\right)^{2}}=\frac{7(4 x-7)^{6}\left(-9 x^{3}+21 x^{2}+4\right)}{\left(x^{3}+1\right)^{8}}$
(c) $f^{\prime}(x)=2(9 x-8) \cdot 9 \cdot\left(x^{2}+x+1\right)^{5}+(9 x-8)^{2} \cdot 5 \cdot\left(x^{2}+x+1\right)^{4}(2 x+1)$ or $f^{\prime}(x)=(9 x-8)\left(x^{2}+x+1\right)^{4}\left(108 x^{2}-17 x-22\right)$
3. (a) $s^{\prime}(t)=0.3 t^{2}-5.6 t+12.8$ so $s^{\prime}(12)=-11.2$ feet per second. He is swimming up (depth is decreasing) at 11.2 feet per second.
(b) When s^{\prime} switches from + to -: $s^{\prime}(t)=0$ when

$$
t=\frac{5.6 \pm \sqrt{5.6^{2}-4(0.3)(12.8)}}{0.6}=16 \text { or } 8 / 3 \approx 2.67
$$

The graph of s^{\prime} is a parabola which opens up (see below) so the switch from + to - is at $t=8 / 3$ seconds.
(c) The graph of s^{\prime} is a parabola which opens up. It crosses the time axis at $t=8 / 3$ and $t=16$. You can see the y intercept to be 12.8 from the equation. Yoda is swimming fastest at the vertex of the parbola when $t=6.6 / 0.6 \approx 9.3$ seconds. (You can also find this by $s^{\prime \prime}=0$). To complete the picture of the parabola you can compute his velocity $s^{\prime}(28 / 3) \approx-13.3$ seconds. Since this is negative, his depth is decreasing and he is swimming towards the surface.

(d) See above picture.
(e) They start at the same depth at $t=0$ and then until $t \approx 2.67$, Mako dives and Yoda swims up so they are moving further apart at $t=2$.
(f) Yoda, by the above argument.
4. (a) $C^{\prime}(x)=0.75 x^{2}-12 x+60$ so $C^{\prime}(5)=18.75$ dollars per Top.
(b) $P^{\prime}(x)=R^{\prime}(x)-C^{\prime}(x)=(-5 x+80)-\left(0.75 x^{2}-12 x+60\right)=-0.75 x^{2}+7 x+20=0$ when

$$
x=\frac{-7 \pm \sqrt{49+4(0.75) 20}}{-1.5} \approx 11.627 \text { or }-2.29 .
$$

P^{\prime} is a parabola which opens down so the switch from + to - happens at $x \approx 11.627$. So the maximum profit is $P(11.627) \approx 192.740$ thousand dollars or $\$ 192,740$.
(c) $M C^{\prime}=1.5 x-12=0$ when $x=8$ thousand Tops.

