1. (a) \(P(w, y) = -w^2 + 2wy - 3y^2 + 26w + 38y - 130 \)
 (b) \(w = 29, y = 16 \)
 (c) selling one additional Yodget
 (d) 40.75

2. (a) \(\frac{dy}{dx} = (4x + \ln x)^3 \left[7 \left(5\sqrt{x} - \frac{1}{x} \right)^6 \left(\frac{5}{2} x^{-1/2} + x^{-2} \right) \right] + \left(5\sqrt{x} - \frac{1}{x} \right)^7 \left[3 \left(4x + \ln x \right)^2 \left(4 + \frac{1}{x} \right) \right] \)
 (b) \(\frac{9}{10} \ln x + 21x^{1/3} + C \)
 (c) 15,972.64
 (d) \(R_x(x, y) = \frac{(xy^5 + x^6)(3e^{3x})(y^2 - 3) - e^{3x}(y^2 - 3)(y^5 + 6x^5)}{(xy^5 + x^6)^2} \)
 (e) 348.5
 (f) 250

3. (a) \(t = 17 \) seconds
 (b) \(400 - 11t - 5.5h \)
 (c) \(G'(t) = \frac{113.4}{(t + 1)^2} \)
 (d) ii. The gray car is always getting slower. \(G''(t) = -\frac{126.8}{(t + 1)^3} \), which is negative at all positive \(t \), and this implies that \(G'(t) \) is always decreasing.

4. $564.57

5. (a)

<table>
<thead>
<tr>
<th>(r'(x) > 0) and (r''(x) > 0)</th>
<th>ANSWER</th>
<th>(F)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(r'(x) = 0) and (r''(x) > 0)</td>
<td>E, H</td>
<td></td>
</tr>
<tr>
<td>(r'(x) > 0) and (r''(x) = 0)</td>
<td>I</td>
<td></td>
</tr>
<tr>
<td>(r'(x) < 0) and (r''(x) < 0)</td>
<td>C</td>
<td></td>
</tr>
<tr>
<td>(r'(x) > 0) and (r''(x) < 0)</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>(r'(x) = 0) and (r''(x) < 0)</td>
<td>B, G</td>
<td></td>
</tr>
<tr>
<td>(r'(x) = 0) and (r''(x) = 0)</td>
<td>J</td>
<td></td>
</tr>
<tr>
<td>(r'(x) < 0) and (r''(x) > 0)</td>
<td>D</td>
<td></td>
</tr>
</tbody>
</table>

(b) local max at \(m = 14, 24 \); local min at \(m = 17 \)

6. (a) from \(t = 3 \) to \(t = 15 \) hours
 (b) local maximum at \(t = 25 \) hours; local minimum at \(t = 3 \) hours
 (c) 6 feet
 (d) 4631
 (e) $-290; The balloon falls 290 feet during the first 2 hours.