1. (10 points) The Cobb-Douglas production function for a certain Factory is given by the formula:

$$
P=1.7 L^{0.3} K^{0.8}
$$

where P represents the factory's production (in hundreds of items), L is the labor force (measured in workers) and K is the capital investment (measured in thousands of dollars).
a) (2 pts) What is the production for a labor force of 100 workers and a capital investment of $\$ 2,500,000$?

ANSWER: \qquad hundred items
a) (4 pts) Compute the partial derivatives. Simplify your answers.

$$
\begin{aligned}
& \frac{\partial P}{\partial L}= \\
& \frac{\partial P}{\partial K}=
\end{aligned}
$$

b) (4 pts) Suppose this factory has a labor force of 100 workers, and $\$ 1,500,000$ in capital investment. Use a partial derivative to estimate the change in production if the capital investment stays the same, but an additional worker is hired. Show all steps.

ANSWER: \qquad hundred items

Winter 2011
2. (a) $Q(r, s)=\left(\frac{9 s}{r}\right)^{3}[r \ln (s)]^{4}$ $Q_{s}(r, s)=$
(b) (6 points) Let $f(x, y)=40+x y+\frac{1}{x}+\frac{125}{y}$. Find all points (x, y) at which $f(x, y)$ may have a local optimum.

ANSWER: (list all pairs) $(x, y)=$
3. (13 pts) Let $z=f(x, y)=14 x-12 y+3 x^{2} y$.
(a) (2 pts) Write out the formulas for $f_{x}(x, y)$ and $f_{y}(x, y)$.

$$
f_{x}(x, y)=\square \quad f_{y}(x, y)=
$$

\qquad
(b) (4 pts) Find all points (x, y) which are candidates for local maxima or local minima.

ANSWERS: $(x, y)=$ \qquad
(c) $(3 \mathrm{pts})$ Suppose $(x, y)=(4,0)$. circle the correct answer to complete the statement: A small increase in x (with y held fixed) leads to a (LARGER SMALLER EQUAL) increase in z than a small increase in y (with x held fixed).
Show appropriate calculations.

ANSWER: (circle one) LARGER SMALLER EQUAL
(d) (4 pts) If $y=-\frac{1}{3}$ is fixed, the function $g(x)=f\left(x,-\frac{1}{3}\right)$ is a one variable function of x. By showing appropriate calculations, answer the following questions:
i. Is $g(x)$ increasing, decreasing, or neither at $x=3$?

ANSWER: (circle one) INCREASING
DECREASING NEITHER
ii. Is $g(x)$ concave up, concave down, or neither at $x=3$?

Winter 2010 Exam II

4. (8 points)
a) Suppose $g(x, y)=3 x^{2}-5 x+2 x^{2} y-x y^{2}+y^{3}+7$. Compute the following partial derivative:

$$
g_{x}(x, y)=
$$

b) Suppose

$$
z=\frac{3 y}{x^{2}+1}-x e^{y}+2 y \ln y .
$$

Compute the following partial derivative:

$$
\frac{\partial z}{\partial y}=
$$

5. (5 points) You do not know the formula for a certain multi-variable function $f(x, y)$, but you are told that its two partial derivatives are:

$$
\begin{gathered}
f_{x}(x, y)=2 x y+2 y-5 \\
f_{y}(x, y)=x^{2}+y-4
\end{gathered}
$$

Compute or approximate each of the following three values.

$$
\begin{aligned}
& A=\frac{f(1,3.0001)-f(1,3)}{0.0001} \\
& B=\frac{f(2.001,3)-f(2,3)}{0.001} \\
& C=\text { the slope of the tangent line to the graph of } h(x)=f(x, 2) \text { at } x=5
\end{aligned}
$$

\qquad , $\mathrm{B} \cong$ \qquad , C = \qquad

Winter 2009 Exam II
6. Suppose $P(x, y)=x^{3} y+x y^{2}-3 x y+4 x$.

Which graph is steeper: (A) $P(2, y)$ at $y=5$; or (B) $P(x, 5)$ at $x=2$?
7. Let $f(x, y)=x^{4} y^{3}-3 x y^{2}+4 x^{5}-\frac{6}{y^{2}}+\left(e^{x^{3}-x}\right)(\ln y)$. Consider the three functions $f(1, y)$, $f(0, y)$, and $f(-1, y)$. Use a partial derivative to determine which of these functions has the steepest graph at $y=1$.
8. (14 points) Consider the function $z=f(x, y)=-x^{3}+12 x y-4 y^{2}+3 y+15$.
a) (4pts) Write out the two partial derivatives, $f_{x}(x, y)$ and $f_{y}(x, y)$. You need not show work.

$$
\begin{aligned}
& f_{x}(x, y)= \\
& f_{y}(x, y)=
\end{aligned}
$$

b) (5 pts) Find the largest value of the function $f(x, 1)$ over the interval from $x=0$ to $x=3$.

Show all steps.

Answer: \qquad
d) (5 pts) Which graph is steeper:
i. the graph of the function $f(3, y)$ at $y=4 \quad$ OR
ii. the graph of the function $f(x, 1)$ at $x=2$?

Show all work.

