
Linear Algebra and its Applications 355 (2002) 49–70
www.elsevier.com/locate/laa

Small polynomial matrix presentations of
nonnegative matrices

Mike Boyle a, Douglas Lindb,∗
aDepartment of Mathematics, University of Maryland, College Park, MD 20742, USA

bDepartment of Mathematics, University of Washington, P.O. Box 354350, Seattle, WA 98195, USA

Received 13 July 2001; accepted 24 February 2002

Submitted by R.A. Brualdi

Abstract

We investigate the use of polynomial matrices to give efficient presentations of nonnegative
matrices exhibiting prescribed spectral and algebraic behavior.
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1. Introduction

Let S be a unital subring of the real numbersR, andS+ denote the set of its non-
negative elements. The inverse spectral problem for nonnegative matrices asks for
necessary and sufficient conditions on ann-tuple of complex numbers for it to be the
spectrum of ann × n matrix overS+. WhenS = R various ingenious and fascinat-
ing partial results are known (see results, discussions, and references in [2,12,20,21]
and more recently [15,16]). There is a clear conjectural characterization in [6] of
which lists of nonzero complex numbers can be the nonzero part of the spectrum of
a matrix overS+. This conjecture has been verified for manyS, including the main
casesS = R [6] andS = Z [13], but the problem of determining reasonable upper
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bounds for the minimum size of a matrix with a given nonzero spectrum is still out
of reach, even forS = R.

The use of matrices whose entries are polynomials with nonnegative coefficients
to represent nonnegative matrices goes back at least to the original work of Shannon
on information theory [24, Section 1]. Such matrices can provide much more com-
pact presentations of nonnegative matrices exhibiting prescribed phenomena, as well
as give a more amenable and natural algebraic framework [4], of particular value in
symbolic dynamics [5]. Their use focuses attention naturally on asymptotic behavior
having a comprehensible theory. In particular, it seems to us that the problem of de-
termining the minimum size polynomial matrix presenting a given nonzero spectrum
is likely to have a satisfactory and eventually accessible solution, which may also be
useful for bounding the size of nonpolynomial matrix presentations.

In this paper we give realization results, constructing polynomial matrices of
small size presenting nonnegative matrices satisfying certain spectral and algebraic
constraints. Perhaps the main contribution is to show how certain geometrical ideas
interact with polynomial matrices. We hope that the combined geometric-polynomial
viewpoint may be useful in approaching deeper problems. For example, the mini-
mum size problem and the Generalized Spectral Conjecture [5,7] may be approached
in terms of turning the epimorphisms of Theorems 5.1 and 8.8 into isomorphisms.

For the statement of our specific results, recall a matrix isprimitive if it is nonneg-
ative and some power is strictly positive. The inverse spectral problem for nonnega-
tive matrices reduces to the inverse spectral problem for primitive matrices [6]. The
Perron theorem shows that one necessary condition on a list� of complex numbers
for it to be the spectrum of a primitive matrix is that there be one positive element,
called thespectral radius of �, that is strictly larger than the absolute value of each
of the other elements. If one further requires that� be the spectrum of a primitive
matrix overS, then� must also beS-algebraic, that is, the monic polynomial whose
roots are the elements of� must have coefficients inS.

In Section 3 we show how to associate naturally to each matrix with entries in
S+[t] a corresponding matrix with entries inS+. Handelman [9] showed that an
S-algebraic list� satisfying the Perron condition above is contained in the spectrum
of a primitive matrix overS+ with the same spectral radius corresponding to a 1× 1
polynomial matrix if and only if no other element of� is a positive real number.
After developing some machinery for polynomial matrices in Sections 3 and 4, we
show thatevery S-algebraic� satisfying the Perron condition is contained in the
spectrum of a primitive matrix with the same spectral radius coming from a 2× 2
polynomial matrix overS+[t]. This answers a question raised in [4, Section 5.9] and
generalizes a result of Perrin (see Remark 6.7). The proof, combined with a simple
geometrical observation, allows us to recover Handelman’s original result in Section
7. In Section 8 we refine our results for nonzero spectra by finding small polynomial
matrix presentations for actions on appropriateS-modules.

We thank Robert Mouat for suggesting an important simplification in the basic
construction of Section 3.
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2. Preliminaries

We collect here some convenient notation and terminology.
Let S denote an arbitrary unital subring of the realsR, so thatS is a subring

containing 1. Note thatS is either the discrete subringZ of integers or is dense inR.
Denote byK the quotient field ofS. We letS+ = S ∩ [0,∞) denote the nonnegative
semiring ofS, andS++ = S ∩ (0,∞) be the set of strictly positive elements ofS.
The ring of polynomials with coefficients inS is denoted byS[t], and the semiring
of polynomials with coefficients inS+ by S+[t].

A list is a collection of complex numbers where multiplicity matters but
order does not. We use the notation� = 〈λ1, . . . , λn〉 for a list, so that〈1, 1, 2〉 =
〈2, 1, 1〉 /= 〈1, 2〉. A list � is contained in another list�′, in symbols� ⊂ �′, if for
every� ∈ � the multiplicity of� in � is less than or equal to its multiplicity in�′.

The spectral radius of a list � is the numberρ(�) = maxλ∈� |λ|. A list � is
Perron if ρ(�) > 0 and there is aλ ∈ � of multiplicity one such thatλ > |µ| for all
other elementsµ ∈ �. In particular, if� is Perron thenρ(�) ∈ �.

Given a list�, letf�(t) = 
λ∈�(t − λ) denote the monic polynomial whose roots
are the elements of�, with appropriate multiplicity. For example, if� = 〈1, 1, 2〉
thenf�(t) = (t − 1)2(t − 2). We say that a list� is S-algebraic if f�(t) ∈ S[t].

Matrices are assumed to be square. A matrix is callednonnegative (respectively,
positive) if all of its entries are nonnegative (respectively, positive) real numbers. If
A is a real matrix, let sp(A) denote the list of (complex) eigenvalues ofA and sp×(A)
the list of nonzero eigenvalues ofA. The spectral radiusρ(A) of A is then just the
spectral radius of the list sp(A). We say thatA is Perron if sp(A) is Perron. Thus a
primitive matrix is always Perron.

3. The�-construction

Let P(t) = [pij (t)] be anr × r matrix overS[t]. We construct a directed graph
�P(t) whose edges are labeled by elements fromS. The adjacency matrix of�P(t) is
denoted byP(t)�, which has entries inS. The process of passing fromP(t) toP(t)�

is called the�-construction.
To describe�P(t), let d(j) = max1�i�r deg(pij ). The vertices of�P(t) are sym-

bols jk, where 1� j � r and 0� k � d(j). For 1� j � r and 1� k � d(j) put
an edge labeled 1 fromjk to jk−1. For each monomialatk in pij (t) put an edge
labeleda from i0 to jk. This completes the construction of�P(t).

Example 3.1. Let S = Z and

P(t) =
[
2t + 3 4t2 + 5t + 6

7 8t2 + 9

]
.

The graph�P(t) is shown in Fig. 1.
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Fig. 1. The graph�P(t) for Example 3.1.

Using the vertex ordering 11, 10, 22, 21, 20, the adjacency matrix of�P(t) takes
the form

P(t)� =


0 1 0 0 0
2 3 4 5 6
0 0 0 1 0
0 0 0 0 1
0 7 8 0 9

 .
Remark 3.2. (1) If A is a matrix overS, thenA� = A. Thus every matrix overS
arises from the�-construction.

(2) The�-construction can be viewed as a generalization of the companion matrix
of a polynomial. For ifP(t) = [p(t)] is 1× 1 andm = deg(p), thenP(t)� is the
companion matrix oftm[t − p(t−1)].

(3) Our construction ofP(t)� from P(t) is a variation of the�-construction of an
S matrix fromtP (t) in [14] (whereS = Z). In particular,

det[I − t{P(t)�}] = det[I − t{tP (t)}�].
The�-construction generally yields smaller matrices than the�-construction, and so
is better suited for our purposes.

If A is a matrix over the complex numbersC, then the polynomial

det[I − tA] =
∏

λ∈sp×(A)
(1 − λt)

determines the list sp×(A) of nonzero eigenvalues ofA. The following result, es-
sentially contained in [3, Theorem 1.7] (see also [4, Section 5.3]), shows that for
A = P(t)� this polynomial can be readily computed from the smaller matrixP(t).

Proposition 3.3. If P(t) is a polynomial matrix over S[t], then

det[I − t{P(t)�}] = det[I − tP (t)]. (3.1)

Proof. LetP(t) = [pij (t)] ber × r, andSr be the permutation group of{1, . . . , r}.
Let V = {jk : 1 � j � r, 0 � k � d(j)} be the vertex set of�P(t), andS(V) de-
note the permutation group ofV. Denote the Kronecker function byδij .
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Consider the expansion of det[I − t{P(t)�}] using permutations inS(V). We first
observe that anyπ ∈ S(V) contributing a nonzero product∏

v∈V

[
δv,πv − t

{
P(t)�v,πv

}]
(3.2)

to this expansion must have a special form. For 1� i � r we have thatπ(i0) = jk
for some 1� j � r and 0� k � d(j). Observe that fork � 1 the nonzero entries in
thejkth row ofI − t{P(t)�} can occur only in columnsjk or jk−1. Sinceπ(i0) = jk,
we must then haveπ(jk) = jk−1. We then see inductively thatπ(jk−1) = jk−2, . . . ,

π(j1) = j0. An analogous argument for predecessors ofjk shows in turn that
π(jk+1) = jk+1, . . . , π(jd(j)) = jd(j). If ak denotes the coefficient oftk in pij (t),
the subproduct of (3.2) over the subset{i0} ∪ {j� : 1 � � � d(j)} ⊂ V is then
(−1)k(−akt

k+1).
This observation also shows that ifi′ /= i andπ(i′0) = j ′

k′ , thenj ′ /= j . Henceπ
induces a permutationσ ∈ Sr defined byσ(i) = j wheneverπ(i0) = jk. Clearlyπ
is determined byσ and the choices ofk with 0 � k � d(j). Conversely, eachσ ∈ Sr
and choice ofk’s determine a relevantπ .

To formalize these observations, defineK to be the set of all functions
κ : {1, . . . , r} → Z+ such that 0� κ(j) � d(j). For eachσ ∈ Sr andκ ∈ K define

πσ,κ(jk) =

(σj)κ(σj) for k = 0,
jk−1 for 1 � k � κ(j),

jk for κ(j) < k � d(j).

Let E(σ ) = {πσ,κ : κ ∈ K} ⊂ S(V). Clearly theE(σ ) are pairwise disjoint for
σ ∈ Sr . Our previous observations show that

⋃
∈Sr E(σ ) contains all permutations in

S(V) that could possibly contribute a nonzero term to the expansion of
det[I − t{P(t)�}].

Fix σ ∈ Sr . The expansion of
r∏

j=1

[
δj,σj − tpj,σj (t)

]
contains monomials parameterized byK, whereκ ∈ K determines which monomial
from each polynomial to select to form a product. As observed above, the same
monomials appear in the expansion of∑

κ∈K
(sgnπσ,κ)

∏
v∈V

[
δv,πσ,κv − t

{
P(t)�v,πσ,κv

}]
,

but multiplied by
∏r

j=1(−1)κ(j). Since the cycle lengths ofπσ,κ increase over those
in σ by a total amount

∑r
j=1 κ(j), it follows that

(sgnπσ,κ)
r∏

j=1

(−1)κ(j) = sgnσ.
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Hence∑
κ∈K

(sgnπσ,κ)
∏
v∈V

[
δv,πσ,κv − t

{
P(t)�v,πσ,κv

}]
= (sgnσ)

r∏
j=1

[
δj,σj − tpj,σj (t)

]
.

Summing overσ ∈ Sr establishes the result. �

Example 3.4. If P(t) is the polynomial matrix in Example 3.1, the reader can verify
that

det[I − tP (t)] = det[I − t{P(t)�}] = 1 − 12t − 17t2 − 25t3 − 4t4 + 16t5.

Remark 3.5. Let � be a directed graph. Borrowing terminology from [3], we call a
subsetR of vertices of� a rome if � has no cycle disjoint fromR. Alternatively,R is
a rome if every sufficiently long path in� must pass throughR, so that all roads lead
to R. A rome is effectively a cross-section for the path structure of�.

For example, ifP(t) is anr × r polynomial matrix, then�P(t) has a romeR =
{10, 20, . . . , r0} of sizer. Conversely, suppose that� is a directed graph whose edges
e are labeled by elements wt(e) ∈ S. Suppose that� has a romeR of sizer. For each
ordered pair(i, j) of vertices inR, let �ij denote the (finite) set of pathsω from i
to j that do not otherwise contain a vertex inR. For each suchω define its length
�(ω) to be the number of edges, and its weight to be wt(ω) =∏e∈ωwt (e) ∈ S.

Let

pij (t) =
∑
ω∈�ij

wt(ω)t�(ω)−1 ∈ S[t],

and P = [pij (t)]. If A is the adjacency matrix of�, then A and P(t)� may be
quite different. However, an argument similar to that in Proposition 3.3 shows that
det[I − tA] = det[I − t{P(t)�}] = det[I − tP (t)]. Thus our results amount to find-
ing graphs with prescribed spectral behavior having small romes.

4. Manufacturing polynomial matrices

Let A be ad × d nonsingular matrix overS, andK be the quotient field ofS.
It is convenient to use row vectors, and therefore to write the action of matrices on
the right. Suppose we haver vectorsx1, . . . , xr ∈ Sd whose images under powers
of A spanKd . Further suppose that each imagexjA can be written as anS-lin-
ear combination of thexiA−k for 1 � i � r andk � 0. Then there are polynomials
pij (t) ∈ S[t] such that
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x1A= x1p11(A
−1) + x2p12(A

−1) + · · · + xrp1r (A
−1),

...
xrA= x1pr1(A

−1) + x2pr2(A
−1) + · · · + xrprr (A−1).

Let P(t) = [pij (t)] be the resultingr × r polynomial matrix. FormP(t)�, say
of sizen. Define aK-linear mapψ : Kn → Kd by ψ(jk) = xjA−k. It is routine to
check that the following diagram commutes.

Kn P (t)
�

−−−→Kn

ψ

� �ψ
Kd −−−→

A
Kd

Since thexi generateKd under powers ofA, it follows thatψ is surjective.
This method provides the algebraic machinery to obtain given matricesA as quo-

tients of�-constructions. The following section shows how to use positivity to control
the spectral radius as well as obtain primitivity ofP(t)�.

5. Small polynomial matrices

In this section we realize a given Perron list as a subset of the spectrum of a
primitive nonnegative matrix having the same spectral radius obtained via the�-
constructions from a polynomial matrix that is either 1× 1 or 2× 2.

Theorem 5.1. Let � be an S-algebraic Perron list of nonzero complex numbers.
Then there is a polynomial matrix P(t) over S+[t] of size at most two such that P(t)�

is primitive, ρ(�) = ρ(P (t)�), and � ⊂ sp×(P (t)�).

Proof. If � = {λ} for someλ ∈ S++, thenP(t) be the 1× 1 constant matrix[λ].
Let d denote the cardinality of�, which we may now assume is at least 2. Putλ =

ρ(�) ∈ �, f�(t) =∏µ∈�(t − µ) ∈ S[t], and letC be thed × d companion matrix
of f�(t). If ej denotes thejth standard basis vector, thenejC = ej+1 for 1 � j �
d − 1.

Let v be a left-eigenvector forC corresponding toλ andV = Rv. Denote byW
the direct sum of the generalized eigenspaces corresponding to the other elements
of �, and letπV denote projection toV alongW. Note thatej /∈ W for 1 � j � d,
sinceW is a C-invariant proper subspace and eachej generatesRd under (positive
and negative) powers ofC. We identifyR with Rv via t ↔ tv, and think ofπV as
having rangeR. Replacingv with −v if necessary, we may assume thatπV (e1) > 0,
and henceπV (ej ) = πV (e1C

j−1) = λj−1πV (e1) > 0 for 1 � j � d.
We claim thatv, v − e1, . . . , v − ed−1 are linearly independent. For if not, thenv

would be a linear combinationv = v1e1 + · · · + vd−1ed−1. Taking dth coordinates
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of vC = λv shows thatvd−1 = 0, and so on, contradictingv /= 0 and proving our
claim. Hence theR+-cone generated byv, v − e1, . . . , v − ed−1 has nonempty inte-
rior. This interior must therefore contain someu ∈ Sd of the form

u = c0v + c1(v − e1) + · · · + cd−1(v − ed−1),

wherecj > 0 for 0 � j � d − 1 and in additionπV (u) > 0. Thus

v = 1

c0 + c1 + · · · + cd−1
(u + c1e1 + · · · + cd−1ed−1)

lies in the interior of theR+-coneK generated bye1, . . . ,ed−1 andu, and in addition
K ∩ W = {0}.

Our goal is to show that for all sufficiently largeN there are elementsaj , bj , a,
andb in S++ such that

edCN = a1e1 + · · · + ad−1ed−1 + aded + au

= a1edC−d+1 + · · · + ad−1edC−1 + aded + au, (*)

uCN = b1e1 + · · · + bd−1ed−1 + bded + bu

= b1edC−d+1 + · · · + bd−1edC−1 + bded + bu,

Suppose for now this goal has been met. Then applyingC−N+1 to both equa-
tions puts us into the situation described in Section 4, withr = 2, x1 = ed , x2 = u,
and

P(t) =
[
a1t

N+d−2 + a2t
N+d−3 + · · · + ad−1t

N + adt
N−1 atN−1

b1t
N+d−2 + b2t

N+d−3 + · · · + bd−1t
N + bdt

N−1 btN−1

]
.

The graph�P(t) is strongly connected becauseaj , bj , a, b > 0. It also has period
one sinced � 2 and gcd(N − 1, N) = 1. ThereforeP(t)� is primitive. The mapψ
defined in Section 4 shows thatC is a quotient ofP(t)�, so that� = sp(C) ⊂
sp×(P (t)�), and henceρ(�) � ρ(P (t)�). The Perron eigenvector forP(t)� is map-
ped byψ to a vector which is nonzero (it is a strictly positive combination of
e1, . . . ,ed−1, andu) and which is therefore an eigenvector ofC with eigenvalue
ρ(P (t)�), proving thatρ(�) � ρ(P (t)�). This completes the proof except for estab-
lishing (∗).

To prove that(∗) holds for sufficiently largeN, we consider separately the cases
S = Z andS dense inR.

First suppose thatS = Z. Since� is Z-algebraic and|�| = d � 2, it follows that
|∏µ∈� µ| = |f�(0)| � 1, and henceλ = ρ(�) > 1. LetL = Ze1 ⊕ · · · ⊕ Zed−1 ⊕
Zu be the lattice generated bye1, . . . ,ed−1, u. ChooseM large enough so that every
translate ofQ = [1,M]d contains an element ofL. Suppose thatw ∈ Zd has the
property thatw − Q is contained in the interiorK◦ of the coneK. Thenw − Q

contains an elementx = w − q in L, sayx = n1e1 + · · · + nd−1ed−1 + nu with nj ,

n ∈ Z. These coefficientsnj , n must then be inZ++ becausex ∈ K◦ and the rep-
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resentation ofx as a linear combination of the linearly independent vectorse1, . . . ,

ed−1, u is unique. Nowq = w − x ∈ Zd ∩ Q, and soq = q1e1 + · · · + qded with
all qj ∈ Z++. Thus

w = x + q = (n1 + q1)e1 + · · · + (nd−1 + qd−1)ed−1 + qded + nu,

where the coefficient of each vector lies inZ++. Sincev is the dominant eigen-
direction, its eigenvalueλ > 1, andπV (ed) > 0, πV (u) > 0, it follows that for all
sufficiently largeN both edCN − Q andu CN − Q are contained inK◦. By what
we have just done, this shows that(∗) is valid in the caseS = Z.

Finally, suppose thatS is dense inR. LetKS denote the set of all elements inK of
the forms1e1 + · · · + sd−1ed−1 + su, wheresj , s ∈ S++. ClearlyKS is dense inK.
Let w denote any vector inSd lying in the interiorK◦ of K. Then(w − (0, 1)d) ∩ K◦
is open and nonempty, and so contains some vectorx = w − q ∈ KS ⊂ Sd . By
definition,x has the form

x = x1e1 + · · · + xd−1ed−1 + xu,

wherexj , x ∈ S++. Thenq = w − x ∈ Sd ∩ (0, 1)d , so thatq = q1e1 + · · · + qded ,
whereqj ∈ S++. Hence

w = x + q = (x1 + q1)e1 + · · · + (xd−1 + qd−1)ed−1 + qded + xu,

where each coefficient lies inS++. Sincev is the dominant eigendirection and
πV (ed) > 0, πV (u) > 0, bothedCN and uCN are inK◦ for all sufficiently large
N. By the above, we have established(∗) whenS is dense, and completed the proof.

�

6. Examples and remarks

We illustrate how the ideas in the proof of Theorem 5.1 work in three concrete
situations, and also make some general remarks.

Example 6.1. Let S = Z and� = 〈2, 1〉. Then� is anZ-algebraic Perron list with
λ = ρ(�) = 2. Using the notation from the proof of Theorem 5.1,

C =
[
0 1
2 3

]
, v = [−1 1], and W = R · [−2 1].

We picku = v + (v − e1) = [−3 2], so thatπV (u) > 0 andv is in the interiorK◦ of
the coneK generated bye1 andu. HereL = Ze1 + 2Ze2, so we can letQ = [1, 2]2.
The minimalN for which bothe2C

N − Q andu CN − Q are contained inK◦ turns
out to beN = 4. We compute

e2C
4 − [1 1] = [−31 30] = 14[1 0] + 15[−3 2] ∈ L and

uC4 − [1 1] = [−19 16] = 5[1 0] + 8[−3 2] ∈ L.
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Continuing with the method of the proof, we have

e2C
4 = (14e1 + 15u) + (e1 + e2) = 15e1 + e2 + 15u,

uC4 = (5e1 + 8u) + (e1 + e2) = 6e1 + e2 + 8u.

Hence

e2C = 15e1C
−3 + e2C

−3 + 15uC−3 = e2(15C−4 + C−3) + u(15C−3),

uC = 6e1C
−3 + e2C

−3 + 8uC−3 = e2(6C
−4 + C−3) + u(8C−3).

From this we obtain

P(t) =
[
15t4 + t3 15t3

6t4 + t3 8t3

]
.

ThenP(t)� is a 9× 9 primitive integral matrix whose characteristic polynomial is

t9 − 9t5 − 15t4 − 7t + 30 = (t − 2)(t − 1)f (t),

wheref (t) is an irreducible polynomial of degree 7, all of whose roots have absolute
value between 1.46 and 1.86. ThusP(t) satisfies our requirements.

Example 6.2. Again let S = Z and putg(t) = t3 + 3t2 − 15t − 46. Denote the
roots of g(t) by λ∼= 3.89167, µ1 ∼= − 3.21417, andµ2 ∼= − 3.67750. Then� =
〈λ,µ1, µ2〉 is aZ-algebraic Perron list. The companion matrixC of g(t) turns out to
have a positive left-eigenvectorv corresponding toλ. Thus we can letu = e3 since
v lies in the interior of the positive orthantK = R3+. Hence we can use the manu-
facturing technique in Section 4 withr = 1 and the single vectorx1 = e1, yielding a
1 × 1 polynomial matrix. However, sinceµ1 andµ2 are negative and close in size to
λ, it takes a large value ofN to forcee1C

N insideK. By direct computation we find
the smallestN which works isN = 49 and thate1C

49 = [a b c], where

a = 36488554855989658309872537378,

b = 11571239128278403776343659967,

c = 67410400385366369466556470.

Hence

e1C = ae1C
−48 + be1C

−47 + ce1C
−46,

resulting inp(t) = at48 + bt47 + ct46. Then[p(t)]� is a 49× 49 primitive integral
matrix whose characteristic polynomial isg(t)h(t), whereh(t) is an irreducible
polynomial of degree 46 all of whose roots have absolute value between 3.709 and
3.8915< λ and the bounds are optimal to the given accuracy.

Example 6.3. For this example we use the dense unital subringS = Z[1/6]. Let
� = 〈1/2, 1/3〉, anS-algebraic Perron list. Here
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C =
[

0 1
−1/6 5/6

]
, v = [−1 3], and W = R · [−1 2].

We picku = [−2 5], and letK be theR+-cone generated bye1 andu.
First notice that although

uC = [−5/6 13/6] ∈ K◦ ∩ S2

has coordinates inS and is anR++-combination ofe1 and u, it is not an S++-
combination ofe1 andu, since

uC = 1

30
e1 + 13

30
u

is the unique representation ofuC as a linear combination ofe1 andu, and 1/30 /∈ S.
This difficulty explains the necessity in our proof of gettingS++ combinations close
to the given vectors.

Here bothe2C anduC are inK◦. We need to find vectorsae1 + bu that are close
to the given vectors, which is effectively a problem in Diophantine approximation of
rationals by elements ofS.

Fore2C, we seeka, b ∈ S++ so thatx = ae1 + bu = [a − 2b 5b] is coordinate-
wise less than but close toe2C = [−1/6 5/6]. Thusb < 1/6, so we pickb = 5/36.
Thena < −1/6 + 10/36 = 4/36 and we picka = 3/36 = 1/12. Then

e2C − 1

12
e1 − 5

36
u = 1

36
e1 + 5

36
e2,

so that

e2C = e2

(
1

9
C−1 + 5

36

)
+ u
(

5

36

)
.

A similar calculation gives

uC = e2

(
1

36
C−1 + 1

72

)
+ u
(

93

216

)
.

Hence we find

P(t) =
[ 1

9t + 5
36

5
36

1
36t + 1

72
93
216

]
.

ThenP(t)� is a 3× 3 primitive matrix overS+ whose eigenvalues are 1/2, 1/3, and
−19/72.

Remark 6.4. The singleton case� = 〈λ〉 in Theorem 5.1 was handled using a
1 × 1 matrix. With the single exception of the caseS = Z and � = 〈1〉, a 2×2
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polynomial matrix can also be found satisfying the desired conclusions. For ifλ > 1
apply the proof to〈λ, 1〉, and ifλ < 1 apply it to〈λ, λ2〉. If λ = 1 andS is dense,
pickµ ∈ S ∩ (0, 1) and apply the proof to〈1, µ〉.

To discuss the exceptional case, suppose thatA is anr × r primitive integral ma-
trix, wherer � 2. ThenAn > 0 for somen � 1. The spectral radius ofAn is bounded
below by the minimum of the row sums ofAn, and hence byr. Thus ρ(A) =
ρ(An)1/n � r1/n > 1. This shows that whenS = Z and� = 〈1〉 there cannot be a
2 × 2 polynomial matrix satisfying the conclusions of Theorem 5.1.

Remark 6.5. The construction in the proof of Theorem 5.1 typically introduces
additional nonzero spectrum. WhenS = Z there is a further restriction on aZ-
algebraic Perron list� that it be exactly the nonzero spectrum of a primitive integral
matrix. Define tr(�n) =∑λ∈� λ

n, and thenth net trace to be

trn(�) =
∑
d|n

µ
(n
d

)
tr(�d),

whereµ is the Möbius function. If there were a primitive integral matrixA with
sp×(A) = �, then trn(�) would count the number of orbits of least periodn in an as-
sociated dynamical system (see [19, p. 348]). Hence a necessary (and easily checked)
condition for there to be a primitive integral matrixA such that sp×(A) = � is that
trn(�) � 0 for all n � 1. Kim et al. [13] have shown that this condition also suffices.
Their remarkable proof uses, among other things, polynomial matrices to find the
requiredA.

WhenS /= Z, an obviously necessary condition replaces the net trace condition
above: if trn(�) > 0 then trkn(�) > 0 for all k � 1. The Spectral conjecture in [6]
states that whenS /= Z this condition is sufficient for anS-algebraic Perron list to
be the nonzero spectrum of a primitive matrix overS+. The Spectral Conjecture was
proven in [6] for the caseS = R, and some other cases.

Remark 6.6. There are constraints of Johnson–Loewy–London type [11,20] which
put lower bounds on the size of a polynomial matrixP(t) for whichP(t)� realizes
a given Perron list�. For example, forS = Z, if tr1(�) = n andρ(�) < 2, then
the size ofP(t) must be at leastn (otherwise a diagonal entry ofP(t) would have a
constant term 2 or greater, forcingρ(�) � 2). Without trying here to formulate these
constraints carefully, it seems reasonable to us to expect that they may give nearly
sharp bounds on the smallest size of a polynomial matrix realizing a given nonzero
spectrum.

Remark 6.7. As pointed out in [4], one consequence of work by Perrin [22] is
a version of Theorem 5.1 without the additional property thatP(t)� is primitive.
This property is significant because applications of nonnegative matrices are often
reduced to or based on the primitive case.
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Remark 6.8. The technique in Section 4 of manufacturing nonnegative matrices
using a general matrix with Perron spectrum was introduced in [17] and used subse-
quently in various guises (e.g. [8, Theorem 5.14] and [10,18]).

7. Handelman’s theorem

We use the geometric point of view developed above to recover the main parts of
Handelman’s result [9, Theorem 5].

Suppose thatP(t) = [p(t)] with p(t) ∈ S+[t]. By Proposition 3.3, every nonzero
eigenvalueµ of P(t)� satisfies 1= µ−1p(µ−1). Several people have observed that
strict monotonicity oftp(t) for t > 0 then implies that sp×(P (t)�) cannot have any
positive members except for the spectral radiusρ(P (t)�). The following result of
Handelman provides a converse to this, and is relevant, for example, in determining
the possible entropies of uniquely decipherable codes [10]. Handelman’s original
proof employed results about the coefficients of large powers of polynomials.

Our proof combines ideas from the previous section with the following elemen-
tary property of linear transformations. In order to state this property, recall that the
nonnegative cone generated by a set of vectors in a real vector space is the collection
of all finite nonnegative linear combinations of vectors in the set.

Lemma 7.1. Let B be an invertible linear transformation of a finite-dimensional
real vector space and suppose that B has no positive eigenvalue. Then for every
vector e, the nonnegative cone generated by {eBm : m � 0} is a vector subspace.

Proof. Given a vectore, let K be the nonnegative cone generated by the{eBm :
m � 0}, and letW be the real vector space generated by{eBm : m � 0}. We claim
thatK = W .

For suppose thatK /= W . Let K denote the closure ofK. Since proper cones
are contained in half-spaces [23, Theorem 11.5], it follows thatK /= W . ThenU =
K ∩ (−K) is a subspace ofW such thatU�K. BothW andU are mapped into them-
selves byB. Hence the quotient mapD of B onW/U maps the closed coneK/U

into itself. Furthermore,K/U has nonempty interior and(K/U) ∩ (−K/U) = {0}.
It then follows (see [1] or [2, p. 6]) that the spectral radiusλD of D is an eigenvalue
of D. BecauseB is invertible andW/U is nonzero. we have thatλD > 0. But every
eigenvalue ofD is an also eigenvalue ofB, contradicting the hypothesis onB. �

Theorem 7.2. Let � be an S-algebraic Perron list of nonzero complex numbers
having no other positive elements except its spectral radius. Then there is a 1 × 1
polynomial matrix P(t) over S+[t] such that P(t)� is primitive, ρ(�) = ρ(P (t)�),

and � ⊂ sp×(P (t)�).

Proof. We use the same notation as in the proof of Theorem 5.1, except we do
not need the auxiliary vectoru. As in that proof,d is the cardinality of�, V = Rv
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is the dominant eigendirection for the companion matrixC of f�(t) =∏µ∈�(t −
µ) ∈ S[t], andW is the complementaryC-invariant subspace. Here the cased = 1
is trivial, so we assume thatd � 2.

Let B be the restriction ofC toW , ande be the projection ofe1 to W alongV.
The form of the companion matrix shows that{eBm : m � 0} generates the vector
spaceW. It then follows from Lemma 7.1 that0 is in the strict interior of the convex
hull of a finite number of theeBm. Thus there is anM � d such thatv is contained
in the strict interior of the positive coneH generated by{e1C

m : 0 � m � M}. Let
I denote the set of nonnegative integral combinations of the{e1C

m : 0 � m � M}.
It is routine to show thatI is syndetic inH, so that there is ana > 0 such that if
x − [1, a]d ⊂ H then(x − [1, a]d) ∩ I /= ∅.

Sincev is the dominant eigendirection andπV (e1) > 0, it follows that for all
sufficiently largeN > M we have thate1C

N − [1, a]d ⊂ H . Hence there arevj ∈
[1, a] andwm ∈ Z+ ⊂ S+ such that

e1C
N −

d∑
j=1

vjej =
M∑

m=0

wme1C
m.

Sincee1C
m ∈ Sd for all m � 0, we see that eachvj ∈ S ∩ [1, a] ⊂ S++. Applying

C−N+1 then shows that

e1C =
d∑

j=1

vje1C
−N+j +

M∑
m=0

wme1C
−N+m+1.

Thus we are again in the situation of Section 4, withr = 1 andx1 = e1. Let P =[
p(t)
]

be the resulting 1× 1 matrix overS+[t]. Sincevj > 0 for 1 � j � d andd �
2, it follows thatP(t)� is primitive. The same arguments as before now show that
ρ(�) = ρ(P (t)�) and� ⊂ sp×(P (t)�). �

8. Direct limit modules

A matrix A over S induces an automorphism̂A of its associated direct limitS-
moduleGS(A) (the definitions are given below). The isomorphism class of theS-
module automorphism̂A determines the nonzero spectrum ofA, and often gives
finer information. In the caseS is a field,Â is the linear transformation obtained by
restrictingA to the maximal subspace on which it acts nonsingularly, and such anÂ

is classified by its rational canonical form. For more complicatedS, the classifica-
tion of Â is more subtle (see [7] and its references): the isomorphism class ofÂ is
determined by and determines the shift equivalence class overS of the matrixA (the
“algebraic shift equivalence” class in [7]), which in the caseS = Z is an important
invariant for symbolic dynamics [19].

Let S[t±] denote the ringS[t, t−1] of Laurent polynomials with coefficients inS.
As we work with polynomial matrices, it will be convenient for us to considerGS(A)



M. Boyle, D. Lind / Linear Algebra and its Applications 355 (2002) 49–70 63

as anS[t±]-module, by lettingt−1 act byÂ (the convention of usingt−1 here rather
thant will be explained later). Knowing the class ofGS(A) as anS[t±]-module is
equivalent to knowing the class of̂A as anS-module automorphism. We letgS(A)

denote the cardinality of the smallest set of generators of theS[t±]-moduleGS(A).
Our main result of this section sharpens Theorem 5.1 to show that ifA is Perron,

then we can always find aP(t) overS+[t] of size at mostgS(A) + 1 so thatP(t)�

is primitive with the same spectral radius asA and there is anS[t±]-module epimor-
phismGS(P (t)

�) → GS(A). This result implies Theorem 5.1 by lettingA be the
companion matrix off�(t). We will also see that the size ofP(t) here must always
be at leastgS(A), and for someA must be at leastgS(A) + 1.

Now we turn to the promised definitions. We first recall the definition of direct
limits, using the directed set(Z,�), of systems of modules over a commutative ring
R. For everyi ∈ Z let Mi be anR-module, and for alli � j let φij : Mi → Mj be
anR-homomorphism such thatφii is the identity onMi , and if i � j � k thenφjk ◦
φij = φik. Then({Mi}, {φij }) is called adirected system of R-modules. Thedirect
limit of such a system is theR-module

(⊕i∈ZMi)/N,

whereN is theR-submodule of the direct sum generated by elements of the form(
. . . , 0, ai, 0, . . . , 0,−φij (ai), 0, . . .

)
, (8.1)

whereai ∈ Mi occurs in theith coordinate and−φij (ai) ∈ Mj in thej th coordinate.
To specialize to our situation, letA be ad × d matrix overS. Consider the di-

rected system({Mi}, {φij }) of S-modules, whereMi = Sd for all i ∈ Z andφij =
Aj−i for i � j . The direct limit of this system is called thedirect limit S-module of
A, and is denoted byGS(A). Thus a typical element ofGS(A) has the form(si ) + N ,
where(si ) ∈ Sd for all i and si = 0 for almost all i. Using members ofN of the
form (8.1), each element(si ) ∈⊕Z Sd is equivalent moduloN to one of the form
(. . . , 0, 0, s, 0, 0, . . .) with at most one nonzero entry.

TheS-module homomorphism̂A of GS(A) is defined byÂ : (si ) + N �→ (siA)
+ N . To see that̂A is an automorphism note that(siA) + N = (si+1) + N , so Â
agrees with the automorphism ofGS(A) induced by the left-shift on the direct sum.

There is a more concrete description of the direct limitS-module. To describe
this, recall thatK denotes the quotient field ofS. Define theeventual range of A to
be

R(A) =
∞⋂
j=1

RdAj =
d⋂

j=1

RdAj .

Then the restrictionA× of A toR(A) is an invertible linear transformation. Set

G̃S(A) = {x ∈ R(A) ∩ Kd : xAm ∈ Sd for somem � 0
}
.

The restrictioñA of A to G̃S(A) is anS-module automorphism of̃GS(A).
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Lemma 8.1. There is an S-module isomorphism between GS(A) and G̃S(A) which
intertwines Â and Ã.

Proof. As observed above, each element(si ) + N ∈ GS(A) has a representation as
(. . . , 0, 0, si, 0, 0, . . .) + N, wheresi occurs in theith coordinate. By using another
element ofN of the form (8.1) and increasingi if necessary, we may also assume
that si ∈ R(A) ∩ Kd . Defineψ : GS(A) → G̃S(A) by mapping such an element
(A×)−isi ∈ G̃S(A). It is routine to show thatψ is a well-defined isomorphism which
intertwinesÂ andÃ. �

In view of this result, we will often identifyGS(A) with G̃S(A).

Example 8.2. (a) Let d = 1,S = Z, andA = [2]. Then G̃S(A) = G̃Z([2]) =
Z[1/2], andÃ acts by multiplication by 2.

(b) Letd = 2,S = Z,

B =
[

1 1
1 1

]
.

ThenG̃Z(B) = Z[1/2] · [1, 1], andB̃ again acts by multiplication by 2.
HereA andB give isomorphic direct limitS[t±]-modules.

Remark 8.3. SinceA× is invertible overS[1/(detA×)], it follows that

R(A) ∩ Sd ⊆ GS(A) ⊆ R(A) ∩ S[1/(detA×)]d .

Hence if 1/(detA×) ∈ S, thenGS(A) = R(A) ∩ Sd , and in particularGK(A) =
R(A) ∩ Kd .

Notice thatI − tA : S[t±]d → S[t±]d is anS[t±]-module homomorphism. De-
note its cokernelS[t±]-module by

coker(I − tA) = S[t±]d/S[t±]d(I − tA).

Lemma 8.4. Let A be a matrix over S. Then there is an S[t±]d -module isomor-
phism between GS(A) and coker(I − tA).

Proof. There are obviousS-module identifications

⊕ZSd ∼= ⊕i∈Z Sd t i ∼= S[t±]d .
In the definition ofGS(A), theS-submoduleN is generated by elements of the form
(. . . , 0, s,−sA, 0, . . .), with s in say theith coordinate. This element is identified
with st i − sAti+1 = st i (I − tA). It follows thatN = S[t±]d(I − tA). Hence

GS(A) = (⊕ZSd)/N ∼= S[t±]d/S[t±]d(I − tA)

asS[t±]-modules. �
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Note thatI = tA on coker(I − tA). Hence under the isomorphisms coker(I −
tA)∼=GS(A)∼= G̃S(A) from the previous two lemmas, the action oft−1 on co-
ker(I − tA) corresponds to the action of̃A on G̃S(A). This explains our earlier
definition of theS[t±]-module structure oñGS(A).

We next highlight the measure of the complexity ofGS(A) which was used in the
preamble to this section.

Definition 8.5. Let A be a matrix overS. DefinegS(A) to be the size of the smallest
generating set forGS(A) as anS[t±]-module.

Suppose thatA is d × d. SinceS[t±]d is generated byd elements overS[t±],
and since(GS(A) is a quotient ofS[t±]d by Lemma 8.4, it follows thatgS(A) � d.

When S = K is a field, thengK(A) is simply the number of blocks in the ratio-
nal canonical form ofA× overK. Also, if K is the quotient field ofS then any
set which generatesGS(A) over S[t±] will generateGK(A) over K[t±], so that
gK(A) � gS(A). However, this inequality can be strict.

Example 8.6. Let B be ad × d cycle permutation matrix, andA = I + 2B. Since
the eigenvalues ofA are distinct, it follows thatA is similar overQ to the companion
matrix of its characteristic polynomial, so thatgQ(A) = 1.

Consider the map

φ : Z[t±]d/Z[t±]d(I − tA) → Zd/Zd(I − A)

induced byφ(t) = 1. Any set ofZ[t±] generators forGZ(A) maps to a spanning set
for the(Z/2Z)-vector space

Zd/Zd(I − A) = Zd/Zd(−2B)∼= (Z/2Z)d .

This shows thatgZ(A) � d. Our remarks above show thatgZ(A) � d, so that
gZ(A) = d.

We now turn to polynomial matrices. LetP(t) be anr × r matrix overS[t],
andP(t)� be then × n matrix resulting from the�-construction. Proposition 3.3 and
Lemma 8.4 suggest introducing theS[t±]-moduleGS(P (t)) defined by

GS(P (t)) = S[t±]r/S[t±]r (I − tP (t)) = coker(I − tP (t)).

Lemma 8.7. GS(P (t)) and GS(P (t)
�) are isomorphic S[t±]-modules.

Proof. Recall from Section 3 thatP(t)� is indexed by symbolsjk, where 1� j � r

and 0� k � d(j). Let ejk ∈ S[t±]n be the corresponding elementary basis vector,
and similarlyej ∈ S[t±]r . Defineφ : S[t±]n → S[t±]r by φ(ejk ) = tkej . Then for
1 � k � d(j),

φ
[
ejk (I − t{P(t)�})] = φ(ejk ) − tφ(ejk−1) = 0,
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while

φ
[
ej0(I − t{P(t)�})] = ej − tpj1(t)e1 − · · · − tpjr (t)er = ej (I − tP (t)).

Hence

φ
[
S[t±]n(I − t{P(t)�})] = S[t±]r (I − tP (t)).

This shows thatφ induces an isomorphism ofS[t±]-modules

GS(P (t)
�)∼= coker(I − t{P(t)�}) φ→ coker(I − tP (t))∼=GS(P (t))

completing the proof. �

Since coker(I − tP (t)) is generated by the images of ther elementary basis
vectors, it follows thatgS(P (t)

�) � r, althoughP(t)� may have size much larger
thanr.

Suppose thatA is a matrix overS, and thatP(t) is an r × r polynomial ma-
trix such that there is aS[t±]-homomorphism fromGS(P (t)

�) ontoGS(A). Then
gS(A) � gS(P (t)

�) � r, so thatgS(A) is a lower bound for the size of any such
polynomial matrix. Our final result shows that, even with a further Perron restriction,
we can always come within one of this lower bound.

Theorem 8.8. Let A be a Perron matrix over S. Then there exists a polynomial ma-
trix P(t) over S+[t] of size at most gS(A) + 1 such that ρ(P (t)�) = ρ(A), P (t)� is
primitive, and there is a S[t±]-module homomorphism from GS(P (t)

�) onto GS(A).

Proof. Suppose thatA is ad × d Perron matrix overS. As before, letK denote the
quotient field ofS. Letλ = ρ(A) > 0 be the spectral radius ofA, andv be an eigen-
vector corresponding toλ. Let m be the dimension of the eventual rangeR(A) of A.
SetV = Rv, and defineπV : R(A) → V to be projection toV along the direct sum
of the generalized eigenspaces of the other eigenvalues ofA× = A|R(A). Identifying
V with R via tv ↔ t means we can think ofπV as having rangeR.

Letg = gS(A). We identifyGS(A) with G̃S(A), and for notational simplicity use
A instead ofÃ. By definition there are elementsx1, . . . , xg ∈ GS(A) that generate
GS(A) over S[t±]. SinceR(A) ∩ Sd ⊂ GS(A) spansR(A) ∩ Kd usingK-linear
combinations, there must be at least onexj with πV (xj ) /= 0. Replacingxj with
−xj if necessary, we can assume thatπV (xj ) > 0. Then by adding to eachxi a large
enough integral multiple ofxj , we can also assume thatπV (xi ) > 0 for 1 � i � g.

For a finite setW of vectors inRd , letK(W) =∑w∈W R+w denote the nonneg-
ative real cone generated byW.

SinceGS(A) spansR(A) ∩ Kd usingK-linear combinations, for all sufficiently
largeD the cone

K
({

xiAj : 1 � i � g,−D � j � D
})
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has nonempty interior inR(A). We extract vectorsb1, . . . ,bm−1 from {xiAj : 1 �
i � g,−D � j � D} such that{b1, . . . ,bm−1, v} is linearly independent. Proceed-
ing as in the construction ofu in Theorem 5.1, we choosec0, c1, . . . , cm−1 from
K++ to define

xg+1 = c0v + c1(v − b1) + . . . + cm−1(v − bm−1)

such thatπV (xg+1) > 0 andv is in the interior ofK({b1, . . . ,bm−1, xg+1}). Define
bm = xg+1. Applying a large power ofA and adjustingD of necessary, we may
assume that eachbj ∈ Sd . Set

X = {xiAj : 1 � i � g + 1,−D � j � D
}

andB = {b1, . . . ,bm}.
Let πR(A) : Rd → R(A) denote the projection toR(A) along the eventual null-

space ofA. For each standard basis vectorej ∈ Rd let uj = πR(A)(ej ). Observe that
uj = (ejAd)(A×)−d , souj ∈ GS(A) for everyj. Since thexi generate underS[t±],
by increasingD if necessary one last time we may assume there areγj (x) ∈ S such
thatuj =∑x∈X γj (x)x. Set

� =
d∑

j=1

∑
x∈X

|γj (x)|.

We claim that for anyv ∈ GS(A) ∩ Sd ,

v =
∑
x∈X

γ (x)x, whereγ (x) ∈ S and|γ (x)| � �‖v‖∞ for all x ∈ X.

(8.2)

To check this claim, suppose thatv =∑d
j=1 vjej ∈ GS(A) ∩ Sd , wherevj ∈ S and

|vj | � ‖v‖∞ for 1 � j � d. Then

v = πR(A)(v) =
d∑

j=1

vjπR(A)(ej ) =
d∑

j=1

vjuj

=
d∑

j=1

vj

(∑
x∈X

γj (x)x
)

=
∑
x∈X

( d∑
j=1

vjγj (x)
)

=
∑
x∈X

γ (x)x,

where

|γ (x)| =
∣∣∣∣∣∣

d∑
j=1

vjγj (x)

∣∣∣∣∣∣ � �‖v‖∞ for all x ∈ X,

establishing (8.2).
Our goal now is to show that ifz ∈ GS(A) with πV (z) > 0, then for all suffi-

ciently largeN > D we can writezAN as anS++-combination of vectors fromX.
Applying this toz = x1, . . . , z = xg+1 puts us into the situation of Section 4, and



68 M. Boyle, D. Lind / Linear Algebra and its Applications 355 (2002) 49–70

the construction of the required polynomial matrixP(t) of sizeg + 1 then follows
using the same method as in the proof of Theorem 5.1. As in the proof of Theorem
5.1, we consider separately the casesS = Z andS dense.

First suppose thatS = Z. Then | detA×| =∏µ∈sp×(A) |µ| ∈ Z++, and hence
λ � 1. If λ = 1, then sinceA is Perron we must have that sp×(A) = {1} and
GZ(A) = R(A) ∩ Zd ∼= Z. In this case simply takeP(t) = [1].

Now suppose thatλ > 1. The lattice
⊕m

j=1Zbj has a fundamental domainF =⊕m
j=1[0, 1)bj . LetC = max{‖w‖∞ : w ∈ F }. Choose@ ∈ Z++ such that@>2C�

and@x ∈ Zd for all x ∈ X. Puty = @
∑

x∈X x ∈ GZ(A) ∩ Zd .
Suppose thatz ∈ GZ(A) andπV (z) > 0. Sinceλ > 1 andv ∈ K(B)◦, for all suf-

ficiently largeN we have thatzAN − y ∈ K(B)◦. Hence there arenj ∈ Z+ such
that

zAN − y =
d∑

j=1

njbj + w,

wherew ∈ F and so‖w‖∞ � C. SincezAN, y, and thebj are inGZ(A) ∩ Zd ,
it follows that w ∈ GZ(A) ∩ Zd . By (8.2),w =∑x∈X γ (x)x, whereγ (x) ∈ Z and
|γ (x)| � �‖w‖∞ � C� for all x ∈ X. Thus

zAn =
d∑

j=1

njbj +
∑
x∈X

[@ + γ (x)]x.

SinceB ⊂ X and@ > |γ (x)| for all x ∈ X, we have that

zAN =
∑
x∈X

ξ(x)x,

whereξ(x) ∈ Z++ for all x ∈ X. This completes the caseS = Z.
Finally, suppose thatS is dense inR. Let z ∈ GS(A) with πV (z) > 0. Then for

all sufficiently largeN we have thatzAN ∈ Sd andzAN ∈ K(B)◦. SinceS is dense,
we can findδ ∈ S++ such thatδx ∈ Sd for all x ∈ X and also that

zAN − δ
∑
x∈X

x ∈ K(B)◦.

By density ofS, we can choosesj ∈ S+ such that

zAN − δ
∑
x∈X

x =
m∑
j=1

sjbj + w,

where‖w‖∞ < δ/2�. Thenw ∈ GS(A) ∩ Sd , and so by (8.2) we have thatw =∑
x∈X γ (x)x, whereγ (x) ∈ S and|γ (x)| � �‖w‖∞ � δ/2 for all x ∈ X. Thus

xAN =
m∑
j=1

sjbj +
∑
x∈X

[δ + γ (x)]x.
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SinceB ⊂ X andδ > |γ (x)| for all x ∈ X, we have that

zAN =
∑
x∈X

ξ(x)x,

whereξ(x) ∈ S++ for all x ∈ X. �

Example 8.9. It is not possible to strengthen the statement of Theorem 8.8 by sim-
ply replacinggS(A) + 1 with gS(A). For letA be the companion matrix ofp(t) =
t2 − 3t + 1 andS = Z. Clearly gS(A) = 1. Now supposeP(t)� is primitive and
there is anS[t±]-module homomorphism fromGS(P (t)

�) ontoGS(A). Then the
two positive roots ofp(t) must be contained in the eigenvalues ofP(t)�, and there-
fore the size ofP(t) must be greater than 1 by Section 7.

Remark 8.10. In Theorem 8.8 we considered possibly singular matricesA. This is
necessary: whenS is not a principal ideal domain, it can happen for a singular matrix
A overS there is no nonsingular matrixB overS such that theS[t±]-modulesGS(A)

andGS(B) are isomorphic [7, Proposition 2.1].
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