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Abstract

We investigate the use of polynomial matrices to give efficient presentations of nonnegative
matrices exhibiting prescribed spectral and algebraic behavior.
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1. Introduction

Let S be a unital subring of the real numbdtsandS_ denote the set of its non-
negative elements. The inverse spectral problem for nonnegative matrices asks for
necessary and sufficient conditions omatuple of complex numbers for it to be the
spectrum of am x n matrix overS,. WhenS = R various ingenious and fascinat-
ing partial results are known (see results, discussions, and references in [2,12,20,21]
and more recently [15,16]). There is a clear conjectural characterization in [6] of
which lists of nonzero complex numbers can be the nonzero part of the spectrum of
a matrix overS .. This conjecture has been verified for mayincluding the main
casesS = R [6] andS = Z [13], but the problem of determining reasonable upper
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bounds for the minimum size of a matrix with a given nonzero spectrum is still out
of reach, even fo = R.

The use of matrices whose entries are polynomials with nonnegative coefficients
to represent nonnegative matrices goes back at least to the original work of Shannon
on information theory [24, Section 1]. Such matrices can provide much more com-
pact presentations of nonnegative matrices exhibiting prescribed phenomena, as well
as give a more amenable and natural algebraic framework [4], of particular value in
symbolic dynamics [5]. Their use focuses attention naturally on asymptotic behavior
having a comprehensible theory. In particular, it seems to us that the problem of de-
termining the minimum size polynomial matrix presenting a given nonzero spectrum
is likely to have a satisfactory and eventually accessible solution, which may also be
useful for bounding the size of nonpolynomial matrix presentations.

In this paper we give realization results, constructing polynomial matrices of
small size presenting nonnegative matrices satisfying certain spectral and algebraic
constraints. Perhaps the main contribution is to show how certain geometrical ideas
interact with polynomial matrices. We hope that the combined geometric-polynomial
viewpoint may be useful in approaching deeper problems. For example, the mini-
mum size problem and the Generalized Spectral Conjecture [5,7] may be approached
in terms of turning the epimorphisms of Theorems 5.1 and 8.8 into isomorphisms.

For the statement of our specific results, recall a matngixiisitive if it is nonneg-
ative and some power is strictly positive. The inverse spectral problem for nonnega-
tive matrices reduces to the inverse spectral problem for primitive matrices [6]. The
Perron theorem shows that one necessary condition on.4 istomplex numbers
for it to be the spectrum of a primitive matrix is that there be one positive element,
called thespectral radius of A, that is strictly larger than the absolute value of each
of the other elements. If one further requires thabe the spectrum of a primitive
matrix overS, thenA must also bé&-algebraic, that is, the monic polynomial whose
roots are the elements df must have coefficients i.

In Section 3 we show how to associate naturally to each matrix with entries in
Sy [f] a corresponding matrix with entries ... Handelman [9] showed that an
S-algebraic list1 satisfying the Perron condition above is contained in the spectrum
of a primitive matrix overS . with the same spectral radius corresponding toall
polynomial matrix if and only if no other element of is a positive real number.
After developing some machinery for polynomial matrices in Sections 3 and 4, we
show thatevery S-algebraicA satisfying the Perron condition is contained in the
spectrum of a primitive matrix with the same spectral radius coming fronx&®2
polynomial matrix ovefs [¢]. This answers a question raised in [4, Section 5.9] and
generalizes a result of Perrin (see Remark 6.7). The proof, combined with a simple
geometrical observation, allows us to recover Handelman'’s original result in Section
7. In Section 8 we refine our results for nonzero spectra by finding small polynomial
matrix presentations for actions on appropriatenodules.

We thank Robert Mouat for suggesting an important simplification in the basic
construction of Section 3.
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2. Preliminaries

We collect here some convenient notation and terminology.

Let S denote an arbitrary unital subring of the re@lsso thatS is a subring
containing 1. Note tha$ is either the discrete subrigof integers or is dense iR.
Denote by the quotient field o. We letS; = S N [0, co) denote the nonnegative
semiring ofS, andS, 4+ = SN (0, co) be the set of strictly positive elements $f
The ring of polynomials with coefficients i is denoted by5|[¢], and the semiring
of polynomials with coefficients i by S [z].

A list is a collection of complex numbers where multiplicity matters but
order does not. We use the notatidn= (i1, ..., A,) for a list, so that(1, 1, 2) =
(2,1,1) + (1, 2). Alist A is contained in another listA’, in symbolsA c A', if for
every) € A the multiplicity of » in A is less than or equal to its multiplicity in’.

The spectral radius of a list A is the numberno(A) = max.cq |A|. A list 4 is
Perronif p(A) > 0 and there is & € A of multiplicity one such that > |u| for all
other elementg € A. In particular, ifA is Perron thep (A) € A.

Given alistA, let f,,(t) = T, 4(t — 1) denote the monic polynomial whose roots
are the elements ofl, with appropriate multiplicity. For example, A = (1, 1, 2)
then f4(1) = (t — 1)2(t — 2). We say that a listl is S-algebraicif f4(r) € S[t].

Matrices are assumed to be square. A matrix is caltauhegative (respectively,
positive) if all of its entries are nonnegative (respectively, positive) real numbers. If
Ais areal matrix, let s@) denote the list of (complex) eigenvaluesfodnd spf (A)
the list of nonzero eigenvalues Af The spectral radiug(A) of A is then just the
spectral radius of the list sp). We say that is Perron if sp(A) is Perron. Thus a
primitive matrix is always Perron.

3. Thep-construction

Let P(r) = [pi;(t)] be anr x r matrix overS[t]. We construct a directed graph
I’ py Wwhose edges are labeled by elements farithe adjacency matrix df p(;) is
denoted byP (¢)#, which has entries is. The process of passing frof(z) to P (z)"
is called theg-construction.

To describel " p (), letd(j) = max;< dedp;;). The vertices of 'p are sym-
bols ji, where 1< j <rand 0< k < d(j). For 1< j <rand 1< k <d(j) put
an edge labeled 1 fromjy to jx_1. For each monomias* in pij(t) put an edge
labeleda from ig to jx. This completes the construction Bp ;).

Example 3.1. LetS = Z and

2t+3 42+5+6
7 82 +9

The graphl"p(; is shown in Fig. 1.

P(t) = [
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Fig. 1. The grapli"p(,) for Example 3.1.

Using the vertex orderingil1o, 22, 21, 29, the adjacency matrix af p(, takes
the form

0 1 0 O
2 3 4 5 6
PH¥*=|0 0 0 1 O
0 00 0 1
0 7 8 0 9

Remark 3.2. (1) If Ais a matrix overS, thenA® = A. Thus every matrix ove®
arises from thé-construction.

(2) Thep-construction can be viewed as a generalization of the companion matrix
of a polynomial. For ifP(r) = [p(t)] is 1 x 1 andm = deq p), then P(¢)* is the
companion matrix of"[r — p(t~1)].

(3) Our construction of (¢)f from P(¢) is a variation of the:-construction of an
S matrix from¢ P (¢) in [14] (whereS = Z). In particular,

def/ — t{P(H)%}] = defl — t{r P(1)}").

The g-construction generally yields smaller matrices thangtieenstruction, and so
is better suited for our purposes.
If Ais a matrix over the complex numbefs then the polynomial

defl —tA] = ]_[ (L—Ap)
reSP* (A)

determines the list Sf{A) of nonzero eigenvalues &. The following result, es-
sentially contained in [3, Theorem 1.7] (see also [4, Section 5.3]), shows that for
A = P(t)" this polynomial can be readily computed from the smaller mati).

Proposition 3.3. If P(t) isa polynomial matrix over S[¢], then
defl — t{P()%}] = dell — tP(1)]. (3.1)
Proof. Let P(r) = [p;;(t)] ber x r, andsS, be the permutation group 61, ..., r}.

Let7 = {jk: 1 < j <r, 0<k <d(j)} be the vertex set of p(,), andS(7") de-
note the permutation group a@f. Denote the Kronecker function i3y; .
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Consider the expansion of di&t— ¢{ P (r)#}] using permutations i (#"). We first
observe that any € S(7") contributing a nonzero product

[T [8ore = H{P@Fn}] (3.2)
vey”
to this expansion must have a special form. Fat 1 < r we have thatr (i) = ji
for some 1< j < rand 0< k < d(j). Observe that fok > 1 the nonzero entries in
the jith row of I — 1{P(¢)*} can occur only in columng or jx_1. Sincer (ig) = Jjk,
we must then have (ji) = ji—1. We then see inductively that(j,_1) = ji—2, ...,
7 (j1) = jo. An analogous argument for predecessorsjofshows in turn that
7T (jk+1) = Jk+1s - --» T(a)) = Jjacp- If ax denotes the coefficient of in pij(t),
the subproduct of (3.2) over the subdeg} U {j;: 1< € <d(j)} C 7 is then
(—DF(—art* ).

This observation also shows that'if# i andx (i) = j;,, thenj’ # j. Hencer
induces a permutation € S, defined byo (i) = j wheneverr (ig) = ji. Clearlynr
is determined by and the choices dfwith 0 < k < d(j). Conversely, each € S,
and choice ok’s determine a relevant.

To formalize these observations, defie to be the set of all functions
k:{1,...,r} > Zy suchthat 0< «(j) < d(j). Foreachr € S, andkx € K define

(Gj)K(Jj) fork =0,
Tou (k) =y Jk-1 for 1 <k <«()),
Jk fork(j) <k <d()).

Let (o) = {nsx : k € K} C S(77). Clearly the&(o) are pairwise disjoint for
o € S,. Our previous observations show “@Ls, & (o) contains all permutations in
S(7") that could possibly contribute a nonzero term to the expansion of
defl — t{P()4].
Fix o € S,. The expansion of
r

[T050 = tpici@)]

j=1
contains monomials parameterizedywherex € K determines which monomial
from each polynomial to select to form a product. As observed above, the same
monomials appear in the expansion of

Z(Sgnna,lc) 1_[ [81),71,,,,(1) - t{P(t)hv,n(,_Kv}]s
keK veY

but multiplied by]"[;-zl(—l)“f). Since the cycle lengths af; , increase over those
in o by a total amounE;zl/c(j), it follows that

(sgnmo) [ [(—D*Y = sgno.
j=1
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Hence
> (s9n76.) [ [8v.ror — H{P O 7 00}]
keK vey”

= (sgno) [ [ [8j.0) — tPj.0j®)]:

j=1
Summing over € S, establishes the result. O

Example 3.4. If P(¢) is the polynomial matrix in Example 3.1, the reader can verify
that

def/ —rP(t)] =defll —t{P()"}] =1 — 12 — 17° — 253 — 4* + 1665,

Remark 3.5. Let I’ be a directed graph. Borrowing terminology from [3], we call a
subseR of vertices ofl" aromeif I" has no cycle disjoint frorR. Alternatively,Ris
a rome if every sufficiently long path if must pass througR, so that all roads lead
to R Arome is effectively a cross-section for the path structurg.of

For example, ifP () is anr x r polynomial matrix, then"p(;) has a romeR =
{10, 29, ..., ro} Of sizer. Conversely, suppose thats a directed graph whose edges
eare labeled by elements @i € S. Suppose that has a romé& of sizer. For each
ordered pair(i, j) of vertices inR, let ;; denote the (finite) set of patfs from i
to j that do not otherwise contain a vertexRn For each sucly define its length
£(w) to be the number of edges, and its weight to béwvt=[],. Wt (e) € S.
Let

ecw

pij) =Y wi@)“ @t e S|,

wEQ;j

and P =[p;;(H)]. If Ais the adjacency matrix of’, then A and P()* may be
quite different. However, an argument similar to that in Proposition 3.3 shows that
def/ — tA] = de{I — t{P(r)*}] = de{l — ¢ P(¢)]. Thus our results amount to find-
ing graphs with prescribed spectral behavior having small romes.

4. Manufacturing polynomial matrices

Let A be ad x d nonsingular matrix oves, andK be the quotient field o§.
It is convenient to use row vectors, and therefore to write the action of matrices on
the right. Suppose we havevectorsxy, ..., x, € S? whose images under powers
of A spank?. Further suppose that each imaged can be written as af-lin-
ear combination of th&; A=* for 1 < i < r andk > 0. Then there are polynomials
pij(t) € S[t] such that
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X14 = x1p11(A™Y +x2p12(A™H 4+ -+ 4 %, p1,(ATY),

XA =X1pr1 (A7) + Xopra(A™H + -+ X prr (A7,

Let P(t) = [p;;(1)] be the resulting x r polynomial matrix. FormP(1)%, say
of sizen. Define aK-linear mapy : K" — K? by ¥ (j;) = xjA—". It is routine to
check that the following diagram commutes.

g
K” P(t) K}’Z

v |

K5 K
A

Since thex; generate<“ under powers oA, it follows thaty is surjective.

This method provides the algebraic machinery to obtain given matiessquo-
tients ofg-constructions. The following section shows how to use positivity to control
the spectral radius as well as obtain primitivity ®fr)".

5. Small polynomial matrices

In this section we realize a given Perron list as a subset of the spectrum of a
primitive nonnegative matrix having the same spectral radius obtained vig the
constructions from a polynomial matrix that is eithex 1L or 2 x 2.

Theorem 5.1. Let A be an S-algebraic Perron list of nonzero complex numbers.
Then thereisa polynomial matrix P(t) over S_[] of size at most two such that P (¢)"
isprimitive, p(A) = p(P (1)), and A C sp*(P(1)%).

Proof. If A = {A} for somex € S, thenP(t) be the 1x 1 constant matrixa].

Letd denote the cardinality o, which we may now assume is at least 2. Put
p(A) € A, fi(2) = HueA(t — ) € S[t], and letC be thed x d companion matrix
of f4(¢). If e; denotes thgth standard basis vector, thepC = e;j 1 for 1 < j <
d-1.

Let v be a left-eigenvector fo€ corresponding ta. andV = Rv. Denote byW
the direct sum of the generalized eigenspaces corresponding to the other elements
of 4, and letwy denote projection t& alongW. Note thate; ¢ W for 1 < j <d,
sinceW is a C-invariant proper subspace and em;kgenerateﬂd under (positive
and negative) powers @. We identify R with Rv via ¢ <> tv, and think ofry as
having rangeR. Replacingv with —v if necessary, we may assume that(e;) > 0,
and hencery (e;) = my (1C/ 1) = A" 1ny(e) > 0for 1< j < d.

We claim thatv,v — ey, ...,V — ;1 are linearly independent. For if not, then
would be a linear combination = vie; + - - - + vg_1€7—1. Takingdth coordinates
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of vC = Av shows thatv;,_1 = 0, and so on, contradicting =+ 0 and proving our
claim. Hence thé&_ -cone generated by, v — ey, ..., v — €;_1 has nonempty inte-
rior. This interior must therefore contain some S¢ of the form

U=coV+ci(v—ep +--+cg—1(v—€e-1),
wherec; > 0for 0< j < d —1and in additionty (u) > 0. Thus

1
V= u+4c + -t cg_1€4—
Co+61+---+6d—1( 1€1 d—1€4—1)
lies in the interior of theéR . -coneK generated by, . .., ;1 andu, and in addition
KNnw={0}.
Our goal is to show that for all sufficiently lardé¢there are elements;, b;, a,
andb in S such that

edCN =a1®+ -+ ag-—1€5-1+aq€; +au
=a1eC "+t ay_16,C7 Y + agey + au, *)
uch = biey + - + by_184_1 + bges + bu
=b1eyC M 4. by 184C7 Y + byey + bu,

Suppose for now this goal has been met. Then applging ™ to both equa-
tions puts us into the situation described in Section 4, with2, x1 = e;, X2 = U,
and

aptVHI=2 o N+d=3 g N fogeN1 Nt
btV =2 4 pp NS by N btV N

P(t)=[

The graphl'p(, is strongly connected because, b;, a, b > 0. It also has period
one sincel > 2 and gcdN — 1, N) = 1. ThereforeP (1)* is primitive. The mapy
defined in Section 4 shows th& is a quotient of P(r)*, so thatA = sp(C) C
sp (P (1)), and hencer(A) < p(P(r)%. The Perron eigenvector fa?(r)" is map-
ped by to a vector which is nonzero (it is a strictly positive combination of
el,...,€e_1, andu) and which is therefore an eigenvector ©fwith eigenvalue
p(P(1)%), proving thato(A) > p(P(1)*%). This completes the proof except for estab-
lishing ().

To prove that(x) holds for sufficiently largeN, we consider separately the cases
S =7 andS dense inR.

First suppose th& = Z. SinceA is Z-algebraic andA| = d > 2, it follows that
ITTucaitl =1f2(0)] > 1, and hence. = p(A) > 1. LetL = Ze1 @ --- & Z€4-1®
Zu be the lattice generated lay, . . ., ;_1, u. ChooseM large enough so that every
translate ofQ = [1, M]?¢ contains an element df. Suppose thatv € Z¢ has the
property thatw — Q is contained in the interiok° of the coneK. Thenw — Q
contains an elememt=w — ¢ in L, sayX = ni€1 + - - - + ng_16;_1 + nuwith n;,
n € Z. These coefficients ;, n must then be irZ, . becauser € K° and the rep-
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resentation ok as a linear combination of the linearly independent vectgrs. .,
eq—1,u IS unigue. Nowq =w — X € 7%n Q, and soq = g1€1 + - - - + g€ With
all qj € Z++. Thus

W=X+q=m1+qe + -+ (ng—1+ ga—1)€i-1 + qa€s + nu,

where the coefficient of each vector lies#h . Sincev is the dominant eigen-
direction, its eigenvalue > 1, andny(e;) > 0, 7y (u) > O, it follows that for all
sufficiently largeN bothe;CY — @ andu CV — Q are contained irk°. By what
we have just done, this shows tha} is valid in the cas& = 7.

Finally, suppose th& is dense iR. Let K's denote the set of all elementsKrof
the formsiey + - - - 4+ s4—184—1 + su, wheres;, s € S, . ClearlyKs is dense irK.
Letw denote any vector i6¢ lying in the interiork ° of K. Then(w — (0, 1)4) N K°
is open and nonempty, and so contains some vecterw — g € Ks C S%. By
definition,x has the form

X=x181+ -+ xq4-187-1 + xU,
wherex;, x € S;1.Theng = w — x € S9N (0, 1)4, so thay = g1€1 + - - - + qa€y,
whereg; € S . Hence

W=X+0g=(x1+qg1)er+ -+ (xg-1+qi-1)€4-1 + ga€s + xU,

where each coefficient lies i, 4. Sincev is the dominant eigendirection and

wy(ey) > 0, my(u) > 0, bothe;CN anduC? are in K° for all sufficiently large

N. By the above, we have established whensS is dense, and completed the proof.
O

6. Examples and remarks

We illustrate how the ideas in the proof of Theorem 5.1 work in three concrete
situations, and also make some general remarks.

Example 6.1. Let S = Z andA = (2, 1). ThenA is anZ-algebraic Perron list with
A = p(A) = 2. Using the notation from the proof of Theorem 5.1,

0 1
C=|:2 3i|, v=[-1 1], and W=R-[-2 1].

We picku = v + (v — e1) = [—3 2], so thatry (u) > O andvisinthe interiork ° of
the coneK generated bg; andu. HereL = Ze; + 276, so we can leQ = [1, 2]2.
The minimalN for which bothe,CN — @ andu CV — @ are contained ik ° turns

out to beN = 4. We compute
eC*—[1 11=[-31 30=141 0 +15-3 2L and

uC*—[1 11=[-19 16=5[1 0] +8-3 2leL.
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Continuing with the method of the proof, we have
&2C* = (14e1 + 150) + (e1 + &) = 15e1 + e + 15U,

uC* = (5e1 + 8u) + (e1 + e) = 6e; + e + 8u.
Hence
&C = 156;C 3 + &,C 3 + 15uC 3 = e,(15C % + C3) + u(15c %),

UC = 661C 3 +eC 3 +8uC 3 =e6C*+C % +u®Bdc3).

From this we obtain

154+ 153
P = [6t4+t3 83 |

ThenP(r)%is a 9x 9 primitive integral matrix whose characteristic polynomial is
=9 — 154 — 7t +30= (1 — 2)(t — 1) f(1),

wheref (¢) is an irreducible polynomial of degree 7, all of whose roots have absolute
value between 1.46 and 1.86. ThR§) satisfies our requirements.

Example 6.2. Again letS = Z and putg(r) = 3 + 3t — 15 — 46. Denote the
roots of g(r) by A=3.89167 u1 = — 3.21417, anduz = — 3.67750. Thend =
(A, n1, u2) is aZ-algebraic Perron list. The companion mawi»f g(¢) turns out to
have a positive left-eigenvectearcorresponding ta.. Thus we can leti = e3 since

v lies in the interior of the positive orthakk = Ri. Hence we can use the manu-
facturing technique in Section 4 with= 1 and the single vector, = ey, yielding a

1 x 1 polynomial matrix. However, singe; andu, are negative and close in size to
A, it takes a large value ¢ to forcee; CV insideK. By direct computation we find
the smallesN which works isN = 49 and thae;C*° = [a b c], where

a = 36488554855989658309872537378
b =11571239128278403776343659967
¢ = 67410400385366369466556470

Hence
e1C = aerC~® + berC™* + ceiC %8,

resulting inp(r) = ar*® + br*” + ct*6. Then[p(1))* is a 49x 49 primitive integral
matrix whose characteristic polynomial ggr)A(¢), whereh(z) is an irreducible
polynomial of degree 46 all of whose roots have absolute value between 3.709 and
3.8915< X and the bounds are optimal to the given accuracy.

Example 6.3. For this example we use the dense unital subfing Z[1/6]. Let
A =(1/2,1/3), anS-algebraic Perron list. Here
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0 1

C = [—1/6 5/6]’ v=[-1 3, and W=R-.[-1 2].

We picku = [—2 5], and letK be theR_-cone generated kBt andu.
First notice that although

uc =[-5/6 13/6] € K°NS?

has coordinates s and is anR,-combination ofe; andu, it is not an S ;-
combination ofe; andu, since
c 1 13
e =301 3!

is the unique representationwf as a linear combination @f andu, and /30 ¢ S.
This difficulty explains the necessity in our proof of gettifig,. combinations close
to the given vectors.

Here bothe,C anduC are inK°. We need to find vectorse; + bu that are close
to the given vectors, which is effectively a problem in Diophantine approximation of
rationals by elements &.

Fore,C, we seela, b € S sothatx = ae; + bu = [a — 2b 5b] is coordinate-
wise less than but close ®C = [-1/6 5/6]. Thusb < 1/6, so we pickb = 5/36.
Thena < —1/6+ 10/36 = 4/36 and we picki = 3/36 = 1/12. Then

o1 5, 1.5
20~ 1% T 3" T3 T 36

so that

C=ezctt2)+u(
QC=%\5 36 36/

A similar calculation gives

ucC = 1C‘1+1 +u 93
=%\ 36 72 216)

Hence we find
1 5
=t + =
P(t) = [i g ]
Bt 216

ThenP(r)?is a 3x 3 primitive matrix overS, whose eigenvalues ar¢2, 1/3, and
—19/72.

e o
® o

Remark 6.4. The singleton casel = (1) in Theorem 5.1 was handled using a
1 x 1 matrix. With the single exception of the caSe= 7 and A = (1), a 2x2
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polynomial matrix can also be found satisfying the desired conclusions. For it
apply the proof to(x, 1), and if A < 1 apply it to(x, A2). If » = 1 andS is dense,
pick u € SN (0, 1) and apply the proof t¢l, w).

To discuss the exceptional case, supposeAhatanr x r primitive integral ma-
trix, wherer > 2. ThenA” > 0for somen > 1. The spectral radius of” is bounded
below by the minimum of the row sums of”, and hence by. Thus p(A) =
p(AMHY/" > pYn 5 1. This shows that wheB = Z and A = (1) there cannot be a
2 x 2 polynomial matrix satisfying the conclusions of Theorem 5.1.

Remark 6.5. The construction in the proof of Theorem 5.1 typically introduces
additional nonzero spectrum. Whé&h= 7 there is a further restriction on &-
algebraic Perron listl that it be exactly the nonzero spectrum of a primitive integral
matrix. Define tt4") =}, ., A", and thenth net trace to be

tr () = Y () rah,

din

where i is the Mdbius function. If there were a primitive integral matfxwith

sp*(A) = 4, then ty, (A) would count the number of orbits of least perioih an as-
sociated dynamical system (see [19, p. 348]). Hence a necessary (and easily checked)
condition for there to be a primitive integral matéxsuch that spp(A) = A is that

tr,(A) > Oforalln > 1. Kim et al. [13] have shown that this condition also suffices.
Their remarkable proof uses, among other things, polynomial matrices to find the
requiredA.

WhensS + Z, an obviously necessary condition replaces the net trace condition
above: if tr,(A) > 0 then tg,(A) > 0 for all k > 1. The Spectral conjecture in [6]
states that whe® £ Z this condition is sufficient for as-algebraic Perron list to
be the nonzero spectrum of a primitive matrix o@ar. The Spectral Conjecture was
proven in [6] for the cas& = R, and some other cases.

Remark 6.6. There are constraints of Johnson-Loewy—London type [11,20] which
put lower bounds on the size of a polynomial matFix) for which P ()" realizes

a given Perron lisvl. For example, fotS = Z, if tr1(A) = n and p(A) < 2, then

the size ofP(¢+) must be at least (otherwise a diagonal entry @f(¢) would have a
constant term 2 or greater, forcipgA) > 2). Without trying here to formulate these
constraints carefully, it seems reasonable to us to expect that they may give nearly
sharp bounds on the smallest size of a polynomial matrix realizing a given nonzero
spectrum.

Remark 6.7. As pointed out in [4], one consequence of work by Perrin [22] is

a version of Theorem 5.1 without the additional property th&t)* is primitive.

This property is significant because applications of nhonnegative matrices are often
reduced to or based on the primitive case.
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Remark 6.8. The technique in Section 4 of manufacturing nonnegative matrices
using a general matrix with Perron spectrum was introduced in [17] and used subse-
quently in various guises (e.qg. [8, Theorem 5.14] and [10,18]).

7. Handelman’s theorem

We use the geometric point of view developed above to recover the main parts of
Handelman'’s result [9, Theorem 5].

Suppose thaP (t) = [p(z)] with p(¢) € S, [t]. By Proposition 3.3, every nonzero
eigenvalueu of P(r)" satisfies 1= n~1p(u~1). Several people have observed that
strict monotonicity oftp(r) for r > 0 then implies that Sp(P(r)% cannot have any
positive members except for the spectral ragid® (r)*). The following result of
Handelman provides a converse to this, and is relevant, for example, in determining
the possible entropies of uniquely decipherable codes [10]. Handelman’s original
proof employed results about the coefficients of large powers of polynomials.

Our proof combines ideas from the previous section with the following elemen-
tary property of linear transformations. In order to state this property, recall that the
nonnegative cone generated by a set of vectors in a real vector space is the collection
of all finite nonnegative linear combinations of vectors in the set.

Lemma 7.1. Let B be an invertible linear transformation of a finite-dimensional
real vector space and suppose that B has no positive eigenvalue. Then for every
vector e, the nonnegative cone generated by {eB™ : m > 0} isa vector subspace.

Proof. Given a vectore, let K be the nonnegative cone generated by {g®" :
m > 0}, and letW be the real vector space generated{®&@y™ : m > 0}. We claim
thatk = W.

For suppose thak # W. Let K denote the closure df. Since proper cones
are contained in half-spaces [23, Theorem 11.5], it follows Ehg¢ W. ThenU =
K N (—K) is asubspace & such that/ CK . BothWandU are mapped into them-
selves byB. Hence the quotient map of B on W/U maps the closed conk /U
into itself. Furthermorek /U has nonempty interior and /U) N (—K /U) = {0}.

It then follows (see [1] or [2, p. 6]) that the spectral radiysof D is an eigenvalue
of D. Becaus@ is invertible andW /U is nonzero. we have that, > 0. But every
eigenvalue oD is an also eigenvalue &, contradicting the hypothesis & [

Theorem 7.2. Let A be an S-algebraic Perron list of nonzero complex numbers
having no other positive elements except its spectral radius. Then thereisa 1 x 1
polynomial matrix P(¢) over S, [¢] such that P(¢)" is primitive, p(A) = p(P(1)%),
and A C sp*(P(1)").

Proof. We use the same notation as in the proof of Theorem 5.1, except we do
not need the auxiliary vectar. As in that proofd is the cardinality ofd, V = Rv
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is the dominant eigendirection for the companion ma@ief f,(t) = ]_[MeA(t —
w) € S[t], andW is the complementarg-invariant subspace. Here the cake- 1
is trivial, so we assume thdt> 2.

Let B be the restriction of” to W, ande be the projection o&; to W alongV.
The form of the companion matrix shows tHaB™ : m > 0} generates the vector
spacéal. It then follows from Lemma 7.1 thékis in the strict interior of the convex
hull of a finite number of theB™. Thus there is aM > d such that is contained
in the strict interior of the positive conié generated bye;C™ : 0 < m < M}. Let
| denote the set of nonnegative integral combinations of¢h€™ : 0 < m < M}.

It is routine to show that is syndetic inH, so that there is an > 0 such that if
x—[1,al¥ c Hthen(x —[1,al) N1 + .

Sincev is the dominant eigendirection and,(e1) > O, it follows that for all
sufficiently largeN > M we have thae;C"N —[1,4]¢ ¢ H. Hence there are; €
[1, a] andw,, € Z+ C S, such that

d M
e CN — Z Vi€ = Z W, & C™.
j:l m=0

Sincee;C™ e S? for all m > 0, we see that eaaly € SN[1,a] C Syy. Applying
C~N*1 then shows that

d M
e]_C — Z vjelc—N+j + Z wmelc—N-Fm-‘rl.
j=1 m=0

Thus we are again in the situation of Section 4, wite: 1 andx; = e;. Let P =
[p(1)] be the resulting & 1 matrix overS,[¢]. Sincev; > Ofor1< j < d andd >

2, it follows that P(r)* is primitive. The same arguments as before now show that
p(A) = p(P()% andA C sp(P(1)F). O

8. Direct limit modules

A matrix A over S induces an automorphisﬁ of its associated direct limis-
moduleGs(A) (the definitions are given below). The isomorphism class ofShe
module automorphisnd determines the nonzero spectrumAfand often gives
finer information. In the cas® is a field, A is the linear transformation obtained by
restrictingA to the maximal subspace on which it acts nonsingularly, and such an
is classified by its rational canonical form. For more complicéethe classifica-
tion of A is more subtle (see [7] and its references): the isomorphism clagsof
determined by and determines the shift equivalence classSootthe matrixA (the
“algebraic shift equivalence” class in [7]), which in the c&e- Z is an important
invariant for symbolic dynamics [19].

Let S[¢*] denote the ring |z, r 1] of Laurent polynomials with coefficients .

As we work with polynomial matrices, it will be convenient for us to considerA)
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as anS[r*]-module, by letting ~* act by A (the convention of using! here rather
thant will be explained later). Knowing the class 6fs(A) as anS[t*]-module is
equivalent to knowing the class df as anS-module automorphism. We lgt(A)
denote the cardinality of the smallest set of generators obfh€]-moduleGs(A).

Our main result of this section sharpens Theorem 5.1 to show tAasiPerron,
then we can always find A(r) overS_, [¢] of size at mosgs(A) + 1 so thatP (1)*
is primitive with the same spectral radius/Aand there is a[¢*]-module epimor-
phism Gs(P (1)) — Gs(A). This result implies Theorem 5.1 by lettifgbe the
companion matrix off,(¢). We will also see that the size @f(z) here must always
be at leasgs(A), and for someA must be at leagfs(A) + 1.

Now we turn to the promised definitions. We first recall the definition of direct
limits, using the directed séZ, <), of systems of modules over a commutative ring
R. For everyi € Z let M; be anR-module, and for alf < j let¢;; : M; — M; be
anR-homomorphism such tha; is the identity onM;, and ifi < j < kthengj; o
¢ij = ¢ir. Then({M;}, {¢;;}) is called adirected system of R-modules. Thedirect
limit of such a system is tH&-module

(BiczM;)/N,
whereN is theR-submodule of the direct sum generated by elements of the form
(...,O,ai,O,...,O, —(]5,']'(61,'),0,...), (81)

wherea; € M; occurs in theth coordinate and-¢;;(a;) € M; inthe jth coordinate.

To specialize to our situation, |ét be ad x d matrix overS. Consider the di-
rected systent{M;}, {¢;;}) of S-modules, wheré/; = Seforalli e Z andg;; =
A/~ fori < j. The direct limit of this system is called thiérect limit S-module of
A, andis denoted bg s(A). Thus atypical element @fs(A) has the form(s;) + N,
where(s;)) € S? for all i ands; = 0 for almost alli. Using members oN of the
form (8.1), each elemeris) € P, S? is equivalent moduldN to one of the form
(...,0,0,50,0,...)with at most one nonzero entry.

TheS module homomorphlsm of Gs(A) is defined byA (s)+ N+ (sA4)
+ N. To see thatA is an automorphism note thé; A) + N = (S+1) + N, SOA
agrees with the automorphism 6% (A) induced by the left-shift on the direct sum.

There is a more concrete description of the direct liimodule. To describe
this, recall thati denotes the quotient field &. Define theeventual range of A to
be

R(A) = ﬂ RIAT = ﬂ RIA/.
Then the restrictiom ™ of Ato Z(A) is an invertible linear transformation. Set
Gs(A) = |x € 2(A) N K : xA™ e S? for somem > 0}.

The restrictiond of Ato Gs(A) is anS-module automorphism afs(A).
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Lemma8.1. There isan S-module isomor phism between Gs(A) and (N}S(A) which
intertwines A and A.

Proof. As observed above, each eleménj + N € Gs(A) has a representation as
(...,0,0,5,0,0,...) + N, wheres; occurs in thath coordinate. By using another
element ofN of the form (8.1) and increasinigif necessary, we may also assume
thats € Z(A) N K?. Definey : Gs(A) — Gs(A) by mapping such an element
(A7 's € GS(A). Itis routine to show that is a well-defined isomorphism which
intertwinesA andA. O

In view of this result, we will often identifyGs(A) with Gs(A).

Example 8.%. (@) Letd=1,S =7, andA =[2]. Then (~;§(A) = 51([2]) =
Z7[1/2], andA acts by multiplication by 2.
(b) Letd =2,S =7,

1 1
b1
ThenGz(B) = Z[1/2] - [1, 1], and B again acts by multiplication by 2.

HereA andB give isomorphic direct limiS[z*]-modules.

Remark 8.3. SinceA* is invertible overS[1/(detA*)], it follows that
R(A) NS C Gs(A) C 2(A) N S[1/(detA™)]".

Hence if I/(detA*) € S, thenGs(A) = Z(A) N'S?, and in particularG . (A) =
R(A) N K.
Notice that/ — A : S[t*1? — S[¢*] is anS[+*]-module homomorphism. De-

note its cokerneS[r*]-module by

cokel — tA) = S[t*]* /S[*1' (1 — 1 A).
Lemma 8.4. Let A be a matrix over S. Then there is an S[ti]d—module isomor -
phism between Gs(A) and coker(l — ¢t A).
Proof. There are obviouS-module identifications

®757 = @icz U = S[H.
In the definition ofGs(A), theS-submoduleN is generated by elements of the form

(...,0,5 —sA,0,...), with sin say theith coordinate. This element is identified
with st/ — sAri+1 = s/ (I — t A). It follows thatN = S[r*]%(I — tA). Hence

Gs(A) = (@,8%) /N = S[rF19 /S E1 (1 — tA)
asS[r*]-modules. O
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Note that/ = tA on cokef/ — tA). Hence under the isomorphisms colder
tA)=Gs(A) ;5§(A) from the previous two lemmas, the action ©f! on co-
ker(I — tA) corresponds to the action oion Gs(A). This explains our earlier
definition of theS[z*]-module structure o s(A).

We next highlight the measure of the complexity@®f(A) which was used in the
preamble to this section.

Definition 8.5. LetAbe a matrix oves. Definegs(A) to be the size of the smallest
generating set fo6s(A) as anS[r*]-module.

Suppose thaf is d x d. Since§[ti]d is generated byl elements oves[r*],
and sincegGs(A) is a quotient OS[ti]d by Lemma 8.4, it follows thags(A) < d.
WhenS = K is a field, thengy(A) is simply the number of blocks in the ratio-
nal canonical form ofA* overK. Also, if K is the quotient field ofS then any
set which generate€§s(A) over S[r*] will generateG (A) over K[t*], so that
gr(A) < gs(A). However, this inequality can be strict.

Example 8.6. Let B be ad x d cycle permutation matrix, and = I + 2B. Since
the eigenvalues ok are distinct, it follows thaf is similar overQ to the companion
matrix of its characteristic polynomial, so that(A) = 1.

Consider the map
o : 751 12151 (0 — tA) — 797791 — A)

induced byp (1) = 1. Any set ofZ[t*] generators fotG7(A) maps to a spanning set
for the (Z/27)-vector space

741701 — A) = 7974 (—2B) = (2/27)°.

This shows thatgz(A) > d. Our remarks above show thg(A) < d, so that
gz(A) =d.

We now turn to polynomial matrices. L&t (¢) be anr x r matrix overS[¢],
and P (1)* be then x n matrix resulting from th&-construction. Proposition 3.3 and
Lemma 8.4 suggest introducing tB¢r*1-moduleGs (P (1)) defined by

Gs(P(1)) = S[tFY /ST (I — 1 P(t)) = cokel(I — 1 P(t)).
Lemma8.7. Gs(P(t)) and Gs(P(r)?) areisomorphic S[z*]-modules.

Proof. Recall from Section 3 thaR (¢)* is indexed by symbolg, where 1< j < r

and 0< k < d(j). Lete;, S[+*]" be the corresponding elementary basis vector,
and similarlye; € S[+*]". Defines : S[t*]" — S[+*1" by ¢ (e;,) = t*e;. Then for
1<k <d()),

olei (I — PO )] = p(e;) — 1(ej,_,) = 0,
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while

ple (I —t{P")*H] =€ —tpjr()er — - — tpjr(t)e = €;(I — tP(1)).
Hence

S[SU=1"U = H{P(O))] = SIFT' U —1P(1).
This shows thap induces an isomorphism &f[r*]-modules

Gs(P ()% = cokeK] — t{P(1)"}) % coke — 1 P(1)) = Gs(P (1))

completing the proof. [

Since coketl —tP(t)) is generated by the images of theelementary basis
vectors, it follows thatgs(P (1)) < r, althoughP (t)* may have size much larger
thanr.

Suppose thaA is a matrix overS, and thatP(¢) is anr x r polynomial ma-
trix such that there is &[r*]-homomorphism fronGs (P (1)% onto Gs(A). Then
gs(A) < gs(P()% < r, so thatgs(A) is a lower bound for the size of any such
polynomial matrix. Our final result shows that, even with a further Perron restriction,
we can always come within one of this lower bound.

Theorem 8.8. Let Abea Perron matrix over S. Then there exists a polynomial ma-
trix P(r) over S, [t] of size at most gs(A) + 1 such that p(P(1)") = p(A), P(t)*is
primitive, and thereisa S[¢*]-module homomor phism from Gs(P ()" onto Gs(A).

Proof. Suppose thaAis ad x d Perron matrix oveS. As before, let< denote the
guotient field ofS. Let . = p(A) > 0 be the spectral radius 8f andv be an eigen-
vector corresponding to. Let mbe the dimension of the eventual rangéA) of A.
SetV = Rv, and definery : Z(A) — V to be projection td/ along the direct sum
of the generalized eigenspaces of the other eigenvalués ef A|,4). Identifying
V with R viatv < t means we can think ofy as having rang&.

Letg = gs(A). We identifyGs(A) with Gs(A), and for notational simplicity use
Ainstead ofA. By definition there are elemenxs, ..., Xxg € Gs(A) that generate
Gs(A) over S[r*]. SinceZ2(A) N'S? c Gs(A) spansZ(A) N K? using K-linear
combinations, there must be at least onewith 7y (X;) # 0. Replacingx; with
—X; if necessary, we can assume that(x;) > 0. Then by adding to eact a large
enough integral multiple of;, we can also assume thag (x;) > 0 for 1 <i < g.

For afinite set/” of vectors inR?, let K (#) = 3_,,c,,- R+ W denote the nonneg-
ative real cone generated l#y.

SinceGs(A) spansZ(A) N K4 using K-linear combinations, for all sufficiently
largeD the cone

K({xA/:1<i<g —-D<j<D}
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has nonempty interior it?(.«7). We extract vectorby, ..., b,_1 from {x; A7 : 1 <
i <g,—D < j < D}suchthatfby,...,b,_1,Vv}is linearly independent. Proceed-
ing as in the construction af in Theorem 5.1, we choos®, c1, ..., ¢;;—1 from
K1+ to define

Xgr1=coV+c1(Vv—Dby) +...+cu_1(v—Dby_1)
such thatry (X,+1) > 0 andv is in the interior ofK ({by, ..., bp_1, Xg41}). Define
b, = Xg41. Applying a large power ofA and adjustingD of necessary, we may
assume that eadh; € S?. Set

Z={xA:1<i<g+1-D<j<D)

and% = {bsy, ..., b,}.

Let w4 : R? — 2(A) denote the projection t&(A) along the eventual null-
space ofA. For each standard basis veatpre R letu; = m,(4)(€;). Observe that
u; = (e;A9)(A*)~%, sou; € Gs(A) for everyj. Since thex; generate undes[r*],
by increasing if necessary one last time we may assume therg g6 € S such
thatu; =), ., v (X)X. Set

d
r=3%"% 1yl
J=1xex
We claim that for any € Gs(A) N S¢,

v=> y(x, wherey(x)eSandly®)|<I|vl forallxe2.
xex (8.2)

To check this claim, suppose that= Z?zl viej € Gs(A)N'SY, wherev; € Sand
[vj| < |IVle for1 < j < d. Then
d d
V=ma) (V) = Z ViTtaa)(€)) = Z vjuj
j=1 j=1
d

Zyj(X)X> =y (

XEX XeX N j=

=Z(

where

vjyj (x)) =Y y0x
1

XeZ

d
ly 0l =Y vy 0| < TVlls forallx e,
j=1

establishing (8.2).

Our goal now is to show that # € Gs(A) with 7y (2) > 0, then for all suffi-
ciently largeN > D we can writezA" as anS, ,-combination of vectors front.
Applying this toz = X1, ..., Z = Xg41 puts us into the situation of Section 4, and
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the construction of the required polynomial matfx¢) of sizeg + 1 then follows
using the same method as in the proof of Theorem 5.1. As in the proof of Theorem
5.1, we consider separately the caSes Z andS dense.

First suppose tha® = 7. Then |detA*| = H/LESDX(A) lul € Z+4, and hence
A > 1. If A =1, then sinceA is Perron we must have that’sg) = {1} and
Gz(A) = Z(A) N 7¢ = 7. In this case simply tak® (1) = [1].

Now suppose that > 1. The Iattice@'};lej has a fundamental domai =
ea;f’:l[o, Db;. LetC = max{||w|lo : W € F}. ChooseA € Z suchthatA >2CT
andAx € Z4 forallx e . Puty = A Y, x € Gz(A) N Z°.

Suppose that € Gz (A) andry (z) > 0. Sincer > 1 andv € K(B)°, for all suf-
ficiently largeN we have thazAN —y € K(%)°. Hence there are; € Z such
that

d
zAN —-y= anbj +w,
j=1
wherew € F and so||w| s < C. SincezA",y, and theb; are inGz(A)N 74,
it follows thatw € Gz(A) N Z¢. By (8.2),w = Y xex Y X)X, wherey (x) € Z and
lyX)| < I'W|loo < CI' forallx € Z. Thus

d
zA" = “njbj+ > [A + y(0IX.

j=1 Xex
SinceZ ¢ Z andA > |y (x)| for all x € 2, we have that
zAN =) " E00x,
Xex

where& (X) € Z4 4 for all x € 2. This completes the case= Z.

Finally, suppose thab is dense inR. Letz € Gs(A) with 7y (z) > 0. Then for
all sufficiently largeN we have tharA" € S? andzA"Y € K (#)°. SinceS is dense,
we can finds € S, , such thatx € S? for all x € 2" and also that

zAN —§) "x e K(#B)°.
Xex

By density ofS, we can choosg; € S such that
m
ZAN — 5% "x = sjb; +w,
Xex j=1

where||w||o < 8/2I". Thenw € Gs(A) NS¢, and so by (8.2) we have that =
Y xex Y XX, wherey (x) € S and|y (X)| < I'|w|le < 8/2 forallx € 2. Thus

XAV =3 "sibj 4+ > 8+ y (0.
j=1

XEX
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Since# Cc Z ands > |y (x)| for all x € Z, we have that

zAN = Zg(x)x,

Xex

where§(x) € Sy4 forallx e 2. O

Example 8.9. Itis not possible to strengthen the statement of Theorem 8.8 by sim-
ply replacinggs(A) + 1 with gs(A). For letA be the companion matrix gi(z) =

1> —3t+1 andS = Z. Clearly gs(A) = 1. Now supposeP (r)* is primitive and
there is anS[r*]-module homomorphism frongs(P(r)*) onto Gs(A). Then the

two positive roots ofp(r) must be contained in the eigenvaluesiif)?, and there-
fore the size ofP (r) must be greater than 1 by Section 7.

Remark 8.10. In Theorem 8.8 we considered possibly singular matriebhis is
necessary: whes is not a principal ideal domain, it can happen for a singular matrix
Aovers there is no nonsingular matr&overS such that thé&[r*]-modulesG s (A)
andGs(B) are isomorphic [7, Proposition 2.1].
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