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Abstract. We show that every finite entropy ergodic transformation can be
represented as a Lebesgue measure-preserving homeomorphism of the two-
dimensional torus. Whether this is possible with diffeomorphisms is still
unknown. Our proof suggests a notion of ‘“universality” for homeomor-
phisms, about which we formulate several natural but unanswered ques-
tions.

1. Introduction and Statement of the Theorem

Ergodic theory originated with Liouville’s result that the smooth (i.e. C%)
Hamiltonian flow on the manifold of constant energy in the phase space of a
mechanical system preserves a smooth measure. The theory was quickly gener-
alized to the study of measure-preserving transformations of an arbitrary
measure space. Has this singling out of the measure-preserving property ex-
panded the class of objects studied? Kushnirenko [13] showed that smooth
systems have finite entropy. so that infinite entropy transformations have been
added. But no one knows whether every finite entropy transformation is isomor-
phic to a differomorphism of a manifold that preserves a smooth measure. A
negative answer for diffeomorphisms of a fixed manifold could be physically
important, for then the topology of the phase space of a mechanical system
alone might rule out certain ergodic behavior.

Anosov and Katok have found a few positive results. In [2] they construct
ergodic diffeomorphisms of the two-dimensional disc preserving Lebesgue
measure which are isomorphic to certain irrational rotations of the circle. No
one knows whether all irrational rotations can be so represented. Their tech-
nique works on any manifold with a nontrivial circle action, and also produces
zero entropy diffeomorphisms that are weakly mixing, or have any finite or
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infinite number of rationally independent eigenfrequencies (thereby demolishing
the conjecture of Arnold and Avez [3, Appendix 16] that the number of
independent eigenfrequencies is bounded by the dimension of the manifold).
Recently, Katok [oral communication] by different methods has concocted
diffeomorphisms of all two-dimensional manifolds except the disc and sphere
that are isomorphic to Bernoulli shifts. These new methods may work for the
disc and sphere as well.

We prove here that every finite entropy ergodic transformation is modelled
by a continuous (but not necessarily differentiable) map of the two-dimensional
torus T2,

Theorem 1. Every finite entropy ergodic transformation is isomorphic to a
Lebesgue measure-preserving homeomorphism of T2.

Proof. The proof is in three steps. We begin with an arbitrary finite entropy
ergodic transformation T of a Lebesgue space (X, u) that is assumed from now
on to be nonatomic. Suppose that M is a transition matrix of zeros and ones,
and let S be the shift on the corresponding Markov shift space Z,,. Further
suppose that the topological entropy A(S) is strictly greater than the measure
entropy h,(T). The first step is to show in 2 that by a variant of a generator
theorem of Krieger we can find an isomorphism ® of (7, X, ) with (S,Z,,, uy,),
where p,, is shift invariant and has (closed) support all of Z,,.

The second step begins in 3 with an ergodic automorphism ¥V of T2 This V
automatically preserves Lebesgue measure A on T2, and since A, (V) >0, we can
assume (by taking powers of V' if necessary) that hy(V)> h,(T). The Markov
partition for V' discovered by Berg [4] shows that there is a matrix M of zeros
and ones, a shift invariant measure A,, on X,,, and an isomorphism ¥ of
(S,Z45Ay) with (V,T2 M) that is injective except on the inverse image N of a
certain A-null set. Also, ~A(S)=hy(V)>h,(T), so the first step yields a measure
pay on Z,,. An argument shows that p,,(N)=0. Hence if pu,=W¥(p,,), then ¥® is
an isomorphism of (T, X,u) with (V,T% u,), and p, is nonatomic and has full
support on T2,

We complete the proof of Theorem 1 in 4 by observing that these properties
of u, are exactly what is required to apply a theorem of Oxtoby and Ulam [16]
to obtain a homeomorphism H of T?> with H(u,)=A. Then U=HVH "' is a
homeomorphism of T? that preserves A, because V preserves u,, and H is an
isomorphism of (V,T? p,) with (U,T?\). The original (T, X,p) is thus isomor-
phic to (U,T2,A) via the composition H¥® of three isomorphisms. O

Theorem 1 undoubtedly extends to aperiodic transformations as well. What
is needed is an analogue of Krieger’s generator theorem for aperiodic transfor-
mations, where the natural necessary condition, that the entropy of the transfor-
mation on ergodic components be essentially bounded, should also be sufficient.
For further details see [5, Chapter 30].

It is unlikely that these arguments will yield diffeomorphisms of T2, for the
measure p, on T2 can be singular with respect to A, resulting in a nondifferentia-
ble conjugacy H. However, this alone does not necessarily mean that U=
HVH ™! is not smooth. No one knows whether diffeomorphisms of T? that
preserve A represent all finite entropy transformations.
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Infinite entropy homeomorphisms of T? probably exist. We are unaware of
any examples, much less whether they represent all infinite entropy transforma-
tions.

Call a homeomorphism U of a compact metric space Y universal if every
ergodic transformation of entropy less the topological entropy A(U) is isomor-
phic to U acting on Y equipped with an invariant measure with full support. In 5
we observe that our proof shows that ergodic atuomorphisms of T? and subshifts
of finite type are universal. Universality is the opposite of unique ergodicity.
Jewett’s result on the prevalence of unique ergodicity shows that there are many
nonuniversal homeomorphisms. We end with some speculations about universal-
ity, probably the most interesting of which is whether every ergodic transforma-
tion has a universal model.

2. Markov Embeddings.

Here we represent a measure-preserving transformation by a Markov shift with
larger topological entropy acting on an invariant measure whose support is the
entire shift space. The proof involves a modification of Denker’s proof (as given
in ([5], Chapter 28) of a generator theorem of Krieger [12].

Let M =(M;) be an r X r matrix of zeros and ones. The Markov shift space
for M is the compact totally disconnected space =, ={(x)E(1,...,r}*: M,
=1}. The shift transformation S acts on Z,, by S(x)=(y;), where Vi=Xi4 -
Parry [17] discovered that if M is aperiodic, so that S is topologically mixing on
3,y then there is a unique invariant measure A,, on =,, of maximal entropy.
The measure entropy 4, (S) coincides with the topological entropy A(S), and
we denote both by h(M).

Suppose that T is an ergodic transformation of the Lebesgue space (X, pu).
Say that a partition y={E,,...,E,} of X is M consistent if, for all n>0,
w(N7=oT ~'E,)>0 implies that M, . =1 for 0<i<n—1. Say that y is M-com-
patible if, for all n>0, u(N/_oT ‘E,)>0 holds if and only if M,, =1 for
0<i<n-—1.

Let y be an M-consistent generator for T. Then the transformation ®: X—
(1,...,r}*=%, given by ®(x)=(x;), where T'xE€E,, maps p to the measure
d( ,u) o whose support (i.e. the smallest closed sct of full measure) is con-
tained in X,,. If y is also M-compatible, then the support of u,, is exactly Z,,
1.e. py IS positive on nonempty open subsets of Z,,. In either case, ® is an
isomorphism of (7T,X,pn) with (S,2,,, ) Since A,, is the unique measure of
maximal entropy for S, the condition h,(T)<h(M) is necessary for the ex-
istence of an M-compatible, or even an M-cons1stent generator. Strict inequality
turns out to be sufficient.

Theorem 2. If T is an ergodic measure-preserving transformation of (X,p), and
M is an aperiodic matrix with h,(T)<h(M), then there is an M-compatible
generator for T.

Proof. Our proof first sketches the relevant features of Denker’s proof of the
existence of an M-consistent generator, and then describes a modification to
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obtain M-compatibility. We refer to [5] for unfamiliar terminology. The reader
who understands Denker’s proof should have little difficulty supplying the
details omitted here.

By putting more conditions on the blocks of symbols occurring in the
elements of ,,, a smaller closed shift invariant subset = can be produced on
which S is a mixing subshift of finite type and such that 4,(T) <h(S|Z) <h(S)
(see [5, Lemma 26.17]). Suppose that 4 is a block of symbols of length |A4]| that
occurs in =,, but not in . Choose a transition length L so large that if C is any
block occurring in X,,, then there are blocks B,B’ of length L such that the
concatenated blocks ABC and CB’A occur in 2,,. This L can also be chosen so
that if C occurs in =, then 4 occurs in only one place in ABC and in CB’A.

The construction of an M-consistent generator y begins as follows. Let
¢=2(|4|+2L), k>0, and n>2(c+k). Choose a Rohlin set F such that
{T'F}§~" is disjoint and fills most of X. We omit subscripts on k, n, and F since
only the first stage of the construction concerns us. Divide X into eight sets,
labeled I through VIII, by taking in order the unions of successive blocks of
iterates of T on F of length L, |A|, L, k, L, |A|, L, n—c— k, respectively. Let IX
denote the remainder of X. The blocks of length L are kept for transition
purposes. The partition y is determined on II and VI by using A to label each.
On VIII, enough Z-blocks are used in defining y to code a first approximation
to a generator for 7. The partition is inductively defined on an increasing
portion of the set IV using a technique that codes better approximations to a

generator. Finally, y is defined on set IX by using arbitrary Z-blocks.

The essential feature for us is that A occurs in sets II and VI with spacing
2L +|A|+ k, and since n>2(c+ k) no other two occurrences of 4 in a y-name
have this spacing. Thus A codes the set F. Hence F€\/®_ T'y=y;, and this
implies that IX is in y;, and hence that y generates. Thus any extension of y
from the Rohlin stack I-VIII to the remaining set IX using names from X,, and
such that F € y; will still be an M-consistent generator.

Our goal is therefore to define y on IX such that every block in Z,, occurs
with positive measure, while preserving the property that F € y;.

Let re(x)=min{,j>0: T’x € F} denote the return time function of F. It is
easy to arrange F so that |rg||,, = cc. This means that arbitrarily long blocks in
IX are as yet unlabelled.

The obvious way to try to produce the desired vy is simply to list all possible
blocks in 3,,, and use them sequentially to label subsets of IX of positive
measure. This certainly makes y M-compatible. However, the block 4 may now
occur not only to code F, but also in the blocks in IX used for M-compatibility.
This invalidates the coding argument which gives F €y;, and so y may not
generate. We avoid this by coding the blocks of Z,, into IX in the following
special way.

Enumerate all finite blocks in Z,, by a list {B, :m>n}. Since L is a
transition length for Z,,, for each m there are blocks D; ,,, D,,, and D,; of length
L such that

mm~“mEm~m~m+1,m

Cn=AD, ,AD; A ...AD,, DB, DDy s mA...AD,, . A

occurs in 3,,, and also such that 4 occurs in C,, either in B,, or in one of the 2m
positions outside B,, already indicated, but nowhere else. Because of the spacers
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D, and D,;, the blocks C,, are all distinct, for regardless of how 4 occurs in B, ,
C,, has exactly m copies of A preceding and following B, with spacing L.
Choose sets G,, C F, pairwise disjoint and of positive measure, such that

(*)  re>4C,|+n on G,
Let G, = UlG{~'T"*IGI+L+iG _ Label the levels

{T'G,:n+|C,|+L<i<n+2|C,|+L-1}

of G, with C,,, m> n. Fillin the rest of IX with Z-blocks in order to complete
the definition of .

Since every block in =,, occurs in the stack with positive measure, y is
M-compatible.

The occurrence of A in the y-name of a point x is due to one of three
reasons: (1) A is coding F (i.e. this part of the orbit of x is in Il or VI) or is in IV
(used in later stages), (2) 4 is coding B,, (i.e. A is one of the 2m blocks in C,
outside of B,,), or (3) A occurs in a B,,. Because of (*) and the spacers D,, and
D, the first half of C,, cannot be confused with the terminal part of another is
and the last half of C,, cannot be confused with the initial part of another C..
Hence the occurrences of A in the y-name of a point determine the occurrences
of the blocks C,,. Also, since m> n, the occurrences of A due to (1) cannot be
confused with those due to (2). Thus if C,, occurs at position i in the y-name of
x, it follows that either T'x € T"*|%I*1G_CG,, or that C,, is a subblock of
some B, and T'xE€G;; in either case T'x is in IX. This accounts for the
occurrences of A4 due to reasons (2) and (3) above. The remaining 4 blocks are
due to (1), and they determine F as before. Hence F €y, and this completes
our argument. O

3. Markov Partitions for Toral Automorphisms.

Let T? denote the two-dimensional torus R? /22, written additively. An algebraic
automorphism ¥V of T? automatically preserves Lebesgue measure A. We will
henceforth assume that V is ergodic with respect to A. Such a V can be
represented as a 2X2 matrix which acts on R? preserving Z2. Ergodicity of V
means that, considered as a linear transformation of R?, ¥V has a real eigenvalue
A, of modulus greater than 1, and another real eigenvalue A, of modulus less
than 1. Let L, and L, be the projection onto T? of the eigenspaces of V in R?
corresponding to A, and A,. Thus L, and L, each wrap densely around T2

Ken Berg [4] discovered that V has a generator a={D,,...,D,} whose
atoms are parallelograms, with respect to which V is a Markov shift. The
associated transition matrix is M =(M,), where M;=1 if and only if A(D;N

1D)>0 There is a natural surjectlon ¥:3,,—T? defined as follows. If
(x)EE > then n,_ _.V- ’D is a nonempty compact set of diameter bounded
by a multiple of A; . Thus ne «V 'D,. ={»}, and we define ¥(x;)=y. Clearly
¥ S=VV¥. Itis also true that \P(}\M) A. The boundaries of the D, are contained
in LU L,. Thus da=U!_,0D,C L,U L,, the latter set being invariant under V.
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If ¥~ !(y) has more than one element, then some ¥y must lie in the overlapping
boundaries of two atoms of a. Thus ¥ is injective off ¥~ '(U® V' (da))C
¥U(L,U Ly

Such Markov partitions were independently discovered by Adler and Weiss
[1] and used to show that entropy classifies ergodic automorphisms of T2 up to
measure theoretic isomorphism.

Suppose now that V is an ergodic automorphism of T? with A, (V) > h(T).
Let a be the Markov partition for V described above, and M be the correspond-
ing transition matrix. Then A(M)=hy(V)> h,(T). By 2 there is an M-compati-
ble generator y for T, which yields an isomorphism ® of (7,X,u) with
(S, Zpg5 tig)-

Now pu,, is mapped under ¥ to ¥(,,)=p, on T? and p, is invariant under
V. Since ¥ is surjective, the support of p, is all of T2 For ¥ to be an
isomorphism on (S,2,,,1,,), it is sufficient that ¥ be injective a.e. with respect
10 pyy, i.€. that p,, (¥~ '(L,U L,))=p,(L, U L,)=0. To show this, we first use the
observation of Adler and Weiss [1, §10] that the restriction of V to (L,U L)\
{0} is dissipative. Hence there is no finite positive measure there invariant under
V, and so p,((L,U Ly)\{0})=0. Suppose that p,({0})>0. Then since T\{0} is
open, ¥~ '({0}) and ¥~ '(T?\{0}) would be disjoint S-invariant sets of positive
pa, measure. This contradicts the ergodicity of S on (Z,,, u,,) Which results from
the assumed ergodicity of T on (X,u). The same kind of argument shows that p,
1S nonatomic.

Thus the composition ¥® is an isomorphism of (7,X,p) with (V,T% ),
where p, is a nonatomic V-invariant measure which is positive on open sets.

4. The Oxtoby-Ulam Theorem.

We are now ready for the last piece of the proof. While constructing measure-
nreserving homeomorphisms of manifolds, Oxtoby and Ulam proved a result
116, Corollary 1] of which we need the following special case.

Theorem 3. Suppose that u is a probability measure on T? which is nonatomic,
and which assigns positive measure to nonempty open sets. Then there is a
homeomorphism H of T? such that H (p)=A\.

We note that if p is assumed to be given by an everywhere positive C*
density function du/dA, then Moser [15] proved that H could be taken to be a
C* diffeomorphism. However, in our case p need not even be absolutely
continuous with respect to A.

As we indicated in 1, composing the results of the last three sections proves
Theorem 1.

5. Universal Homeomorphisms.
Let S denote the shift on the Markov shift space =,,. Krieger’s generator

theorem implies that if h,(7) <h(S), then there is an S-invariant measure » such
that (7, X, u) is isomorphic to (S, Z,,,»). Indeed, our Theorem 2 shows that » can
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be chosen to have full support. Also, the arguments in 3 prove that ergodic
automorphisms of T? share this property. We isolate this phenomenon in the
following definition.

Definition. A homeomorphism U of a compact metric space Y is called universal
if for every ergodic transformation T of a Lebesgue space (X,p) with h,(T)<h(U),
there is a U-invariant Borel measure v on Y with full support such that (T, X,p) is
isomorphic to (U, Y,»).

Universality is the opposite of unique ergodicity. Hahn and Katznelson [7]
constructed examples of uniquely ergodic homeomorphisms with positive en-
tropy, and these clearly are not universal. Indeed, Jewett’s result [8] that every
weakly mixing transformation has a uniquely ergodic model (extended to
ergodic transformations by Krieger [11]) yields many examples of nonuniversal
homeomorphisms.

There are several natural questions about universality which cannot be
decided on the basis of known examples.

Samples:

(1) Does every ergodic transformation have a universal model (complementing
Jewett’s result)? Or is it the case that universal homeomorphisms automatically
have a unique invariant measure of maximal entropy with respect to which they
are Bernoulli?

(2) Is universality preserved under taking powers or factors? Benjamin Weiss has
pointed out with the following example that in general direct products of
universal systems are not universal. Let U be a universal homeomorphism of
positive entropy and R be an irrational rotation of the circle (which is trivially
universal). Then the projection of every U X R-invariant measure » onto the
second coordinate must be R-invariant, and hence be Lebesgue measure. Thus
(U X R,v) is not weakly mixing, so that U X R is not universal. However, it is
not known whether the product of positive entropy universal homeomorphisms
is universal.

(3) Are ergodic automorphisms of compact groups universal? In particular, are
ergodic nonhyperbolic toral automorphisms universal?

(4) Is a compact group extension of a universal homeomorphism universal?
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