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A Perron number is an algebraic integer =1 that is strictly greater than the
absolute value of its other conjugates. These numbers are precisely the spectral radii
of nonnegative aperiodic integral matrices, and they possess an interesting
arithmetic much like the natural numbers. Motivated by applications to symbolic
dynamics and coding theory, we prove that the spectral radius of an aperiodic
matrix whose nonzero entries are Perron is also a Perron number. Thus the set of
Perron numbers is the “closure” of the natural numbers under the operation of
taking spectral radii of aperiodic matrices with nonzero entries in the set. For a
given nonnegative aperiodic integral matrix, we also obtain, by use of Diophantine
arguments, an explicit upper bound on the smallest eigenvector in the dominant
direction in which every entry is a Perron number. ) 1992 Academic Press, Inc.

1. INTRODUCTION

A Perron number is an algebraic integer > 1 whose remaining conjugates
have strictly smaller absolute value. Denote the set of Perron numbers by
P. Call a nonnegative matrix aperiodic if some positive power of it is
strictly positive. We showed in [L, Thm. 1] that Ae P if and only if 4 is
the spectral radius of an aperiodic nonnegative integral matrix, and this
provided a simple characterization of the values for the topological entropy
for mixing shifts of finite type. We also showed that / is the spectral radius
of a general nonnegative integral matrix if and only if =0 or A*eP for
some k=1 [L, Thm. 3].

The set P of Perron numbers is closed under addition and multiplica-
tion, and has an arithmetic much like the natural numbers N. In particular,
there are Perron numbers that are irreducible in the sense that they have
no nontrivial factorizations in P, and every Perron number is the product
of finitely many irreducibles. Unfortunately, factorization into irreducibles
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is not necessarily unique, but there are at most a finite number of distinct
factorizations [L, Thm. 4]. Boyd [B. Sect. 3] has computed the smallest
Perron number of degree ¢ for d < 12, and formulated a general conjecture
that states, in part, that this number is the root of xY— x — 1 provided that
d#3 or 5 (mod 6).

Since P can be regarded as a generalization of N, it is natural to
investigate the spectral radii of matrices whose entries are in P, =P u {0}.
This question has also arisen in connection with symbolic dynamics [T].
and Tuncel’s work on Bernoulli quotients of Bernoulli shifts was our main
motivation for the results of Section 2. In Theorem 1 we prove that no
additional numbers arise in this process, i.e., that an aperiodic matrix with
entries in P, has spectral radius in P. This means that P is “closure” of N
with respect to the operation of taking spectral radii of aperiodic matrices
whose nonzero entries are the set. This closure property provides evidence
that P is a natural object of study in its own right. The analogous closure
statement for general (not necessarily aperiodic) matrices is the content of
Theorem 2.

If 4 is an rxr aperiodic nonnegative integral matrix whose spectral
radius is an integer n. then 4 has an eigenvector x e N” with eigenvalue n.
We may assume that the entries of x have no common factor, so that x is
the smallest integral eigenvector. This eigenvector is used in symbolic
dynamics [M] and in coding theory [ACH] for the basic state splitting
algorithm. The complexity of the algorithm depends on the size of x.
Motivated by these considerations, Ashley [A] showed that the com-
ponents of x are bounded above by n” ', and that this bound is sharp. In
general, the spectral radius 4 of a nonnegative integral matrix A4 is no
longer integral, but is in P. In this case, there is an eigenvector xe P,
whose entries we can assurne have no common factor in P. There may be
several such vectors, since Perron factorizations may not be unique (cf.
Example 1). If M =max, ;A4;. we prove in Theorem 3 that there exists a
Perron eigenvector x for A with

3
Il < (rM) 0
An explicit estimate along these lines is also possible if 4 has entries in Py,

but the form is more complicated.

2. SPECTRAL RADII OF MATRICES OF PERRON NUMBERS

We show that aperiodic matrices with entries in P,=P U {0} have
spectral radius in P. We then establish the “weak” analogue of this.
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THEOREM 1. Supposc that A= [a;] is aperiodic, and that every o; e P.
Then the spectral radius 4, of A is Perron.

Proof. Let K=Q({x;:1<i,j<r}). The characteristic polynomial
v4(1) of A is in K[1]. Let L be a finite Galois extension of Q containing
K and the roots of y ,(r). Every conjugate of 4, has the form a(4,) for
some g € Gal(L/Q). We show that if o(4,)# 4, then |a(4,)| <4, so that
i.€P.

First suppose that e Gal(L/Q) fixes K. Then a(y,(t))=x.(t), so
that a(4,) is a root of y,(r). Since A is nonnegative and aperlodlc the
Perron-Frobenius theorem shows that either a(4,)=4,, or |a(4,)] <4,
completing the argument in this case.

If ¢ does not fix K, then a(a,,) # a,, for some choice of p, g. Since «,, is
Perron, it follows that |a(x,,)| <x,,. Denote the spectral radius of a matrix
B by p(B). Since a(4,) is an eigenvalue of a(A4), we have that |g(4,)] <

p(cA). If |6A| denotes the matrix [|ox;|], then p(cd)<p(loA|) [G,
XII1.2, Lemma 27]; and since |64| < A, we have that p(|cAd|)<p(4)=7,
[S, Thm. 1.1(e)]. Thus |a(4,)] <4, in this case, which completes the
proof. |

We call an algebraic integer 4 weak Perron if all of the conjugates of 2
have absolute value <. Denote the set of weak Perron numbers by M.
Perron-Frobenius theory shows that ie® if and only if /e P for some
k>1 [L, Sect. 4]. As we remarked in Section 1, P,=P U |0} is exactly
the set of spectral radii of all matrices over Ny=Nu {0}. The following
shows that P, is the closure of N, with respect to taking spectral radii.

THEOREM 2. If A=[o,] is an arbitrary matrix with x; GPO, then
i,€Py.

Proof. We usec the notations from the proof of Theorem 1. If
oceGal(L/Q), then o(4,) is an eigenvalue of gA. Since [o(x;) <ay, it
follows that

lo(2 )| <plcA)< p(loAl) < p(A)=4,,

proving that i,e®,. [

3. PERRON EIGENVECTORS

In this section we establish an upper bound on the size of a Perron
eigenvector for an aperiodic nonnegative integral matrix 4. By cancelling
any common Perron factors from the entries, we may assume the eigen-
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vector has no common Perron factors among its entries. However, unlike
the case of integral spectral radius. this does not uniquely determine the
eigenvector.

ExAMPLE 1. Let o= (I +\/§)/2‘ and

]2 s  Ta42 [ sa
S R A IV K P

Then x and y are both eigenvectors for A with eigenvalue 4, = a°, and both
entries in each eigenvector are irreducible Perron numbers [L, Sect. 5].
The basis of this example is the existence of distinct factorizations 5 -« -o =
(o + 2) (o + 2) of a Perron number into irreducibles.

Despite this lack of uniqueness, we are able to find an upper bound
on the entries of some Perron eigenvector for 4. If xeR’, put jx|, =
max, ¢ <, |1

THEOREM 3.  Suppose that A is an rxr aperiodic nonnegative integral
matrix, with Perron eigenvalue /4 and maximal element M = max, ;A;. Then
there exists an eigenvector x for T with eigenvalue 4, whose components are
in P, and such that

Il < ()0

The proof exploits the fact that the columns of the adjoint matrix of
+I— A are strictly positive eigenvectors for 4 with eigenvalue 4. Although
entries in the adjoint matrix are positive and are polynomials in 4, they
need not be Perron since the polynomials will in general have some
negative coefficients. We then use ideas from Diophantine analysis, similar
to those found in [St, Chap. 4], to obtain an upper bound on the power
K of / needed so that each entry of the adjoint matrix becomes Perron
when multiplied by 2*.

In what follows, the height of a polynomial is the maximum of the
absolute values of its coefficients.

LEMMA 1. Let aeP have degree d, and suppose that f(tye Z[t] has
degree D and height H. If f(2) #0, then

| f(a) = [2P(D+1)H] <+

Proof. Denote the conjugates of x by «, =, %,, ... 2,. Then f(a;) #0
for every j, so that H;’: , f(2;) is a nonzero integer. Since |a;| <« for every
J» clearly

|f(o,)| <2”(D+1)H. (3-1)
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Thus

d

n f(“,)

=1

I'< =f)| [«"(D+1)H]'"" |

LEMMA 2. Let a€P have degree d=2 and conjugates x, = o, %5, ..., dy.
Then for k=2 we have that

bl g (oud) =",
04

Proof. Put g(1)=T1{,_, (t—a,a;)€ Z[1]. Then

ij=1

g (@)= ] o7 —ax]#0.

(i, j)# (1. 1)

If 2<k<d, there is a pair (p.q)#(1,1) with a,2,= |2 Since
lo® — o,0,] <24 for all i and J, it follows that

lg'(2?)] < (22 — |og]?)(222) 7. (3-2)

.

We now apply Lemma 1 to f(z)=g'(t) and «’. Here deg(a’)<d,
D=deg(g')=d*— 1, and since g(1) is majorized by (1 +«>)** we have that

H=H(g')<deg(g) H(g)<d?2(a?)".
Using that d>2, Lemma 1 implies that
]g’(:xz)l > 174d~‘d—5(13.

This, combined with (3-2), shows that

—4d? 24 2 g S5d} - -
e S ; <1-

from which, after recalling that d > 2, we obtain that

2
Ay
| @‘ <1 —2(ad) o,

A

Since /1 —x <1 —x/2 for small x, we obtain the desired inequality. ||

LEMMA 3. Suppose that a € P has degree d. If f(t)e Z[t] has degree D
and height H, and if f(a) >0, then a*f(a)€ P provided that

K> [a?(D+1)H] (ad)*.
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Proof. Denote the conjugates of o by o, =a. as, .., 2, The rcsull is
trivial if d=1, so we assume that ¢>2. The conjugates of a*f(x) are
2} f(a), so we require a K, so that if K> K,, then a*f(a)> |a}f(a | for

2<j<d This inequality is equivalent to

L
<|°‘—f|> < hgica (3-4)

By Lemma 1 we have that
[2”(D+ 1) H] "< fla),

so that, by usec of (3-1),

S(x)
"D+ H] < L2l
Lt ] Lf()]
Since (1 —0)* < 1/(K0) for 0<0<1, by Lemma 2 we obtain that
|°‘ | LK (dd)ﬁlﬂ
< 1 — —6d* K .
()<t B

Thus a*f(a) e P provided that K satisfies (3-3). ||

Proof of Theorem 3. Since 4 satisfies the characteristic polynomial y ,(1)
of A, we have that d=deg(4)<r.

Let G(1)=[g;(t)]=adj(t]— A), where adj(B) denotes the classical
adjoint matrix of B. By standard Perron-Frobenius theory [G, XIII.2.2
(13)], we have that g,(4)>0 for all / and /. Let g,(¢) denote g, (¢), and
define y e R" by y;= g;(4)>0. Since (Al—A) G(A) =y (A1) [=0, it follows
that y is an eigenvector for 4 with eigenvalue /.

Next we determine K so that A*yeP’. Note that deg g,<; , and
clearly H(g,)<r! M’ Tt follows from Lemma 3 that i%g,(i)e P for
1 <i<r provided that

K=Ky=[Ar'M'r] (ir)°

Now A<rM [S, Cor. 1.1.1], and by combining this with r!<r" and
elementary manipulations, we may replace K, with

K, =(rM)""
Finally, observe that

lg:/(A) <riTH(g)<r(rM) r! M"< (rM)™.
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Thus, putting x = A*'y, we have that xe P’, and

ok s s
x|, < (rM)Y AR (PM)Y UM (M) ]
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