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1. INTRODUCTION

Ergodic theory originally arose from study of the time evolution of a
mechanical system. If T, denotes the transformation of the phase space
of a system which takes a state of the system to its state ¢ time units
later, then on physical grounds {T;: t € R} obeys the group property that
T,.,=T/T,, ie., forms a flow with parameter group R. Liouville
discovered that a certain natural measure on phase space is preserved
by each T, reducing statistical mechanics to the study of asymptotic
properties of flows of measure preserving transformations. This approach
was simplified by discretizing time and considering only {7, : n € Z} for
some fixed #,. This has the advantage that only the iterates of a fixed
transformation are in question. Starting with the ergodic theorems of
Birkhoff and von Neumann in 1931, an interesting theory of measure
preserving transformations has been erected. Occasionally the continuous
time case was investigated, notably by Weiner [17], Ambrose [1],
and Ambrose and Kakutani [2]. However, developments centered on
measure preserving transformations.

In the last decade some progress has been made in classifying measure
preserving transformations. Kolmogorov introduced a new numerical
invariant in 1958 called entropy which was suggested by Shannon’s
work on information theory. This invariant distinguished between some
transformations which no one could previously tell apart, and some
intriguing conjectures arose. In the past years a series of papers by
Ornstein has completely solved a number of major problems, including
the isomorphism problem for Bernoulli shifts. A basic technique used
by Ornstein in these papers is a theorem of Rokhlin on the periodic
approximation of transformations.

Some recent work on statistical mechanics by Ruelle [16] and others
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has led to considering flows of measure preserving transformations with
more general parameter groups. For example, translation in any of the
three coordinate directions of an infinite continuous three dimensional
Gibbs state induces a flow with parameter group R®. It is therefore
interesting, and perhaps physically important, to see how much of the
theory for one transformation (alias flow on Z) extends to more general
flows. Conze [3] and Katznelson and Weiss [6] have done some work in
this direction.

The principal result here is the analogue of the fundamental Rokhlin
theorem for aperiodic flows with parameter group R”. This is possibly
the only nontrivial step in extending Ornstein’s isomorphism theorems
to multidimensional Bernoulli flows. Using a metric constructed to prove
Rokhlin’s theorem, we next measurably partition a space acted on by
an arbitrary flow on R™ into invariant components each of which is
acted on aperiodically by a quotient of the flow. This is the aperiodic
version of the ergodic decomposition for transformations due to Halmos
[4]. Finally, we investigate factors of flows and as an application of
Rokhlin’s theorem prove that every flow has a factor of finite entropy.

2. ROKHLIN’S THEOREM FOR n-DIMENSIONAL FLOWS

The stage on which our transformations will act is a nonatomic
Lebesgue measure space (X, 2, u). This is a set X of points, a o-algebra
2 of subsets of X, and a countably additive complete positive measure
p on X with uw(X) =1, and with the further property that the measure
space is measure theoretically isomorphic to a measurable subset of the
unit interval with Lebesgue measure. An equivalent axiomatic description
of Lebesgue spaces has been given by Rokhlin [15]. Most measure spaces
encountered are Lebesgue spaces, and restricting our attention to them
eliminates unpleasant and needless pathology.

An invertible measure preserving transformation of (X, 2, u) is a
bijection S: X — X such that S(2) =2 and w(SE) = w(E) for all
measurable sets E. Such transformations under composition form a group
which we denote by imp(X). Rokhlin’s theorem may be stated as follows.
Suppose S € imp(X) is aperiodic in the sense that u{x: S¥x = x} = 0 for
all k. Then given a positive integer & and positive number ¢, there is a
measurable set F C X such that F, SF,..., S¥-IF are pairwise disjoint
and ,u((_)i:()1 SiF) > 1 — e. A proof of this fact is given in Halmos [5].
Now S can be regarded as a flow on the group of integers Z, that is, a
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homomorphism 7+ St from Z to imp(X). Is there an analogous result
for flows with parameter groups other than Z?

As a step in extending the isomorphism theorem for Bernoulli
transformations, two special groups have been treated. Ornstein [11]
observed that the Ambrose-Kakutani theorem [2] representing flows on
the group of reals R as flows built under a function quickly yields a
version for R. Conze [3] and Katznelson and Weiss [6] have given one
for Z*. Using somewhat different ideas, we give here a proof for R”
which also applies to the previous cases, and discuss its extension to
locally compact parameter groups. This work is the first, and possibly
only nontrivial step necessary to further extend the isomorphism theorem.

An n-dimensional flow T = {T;:te R"} on X is a homomorphism
T: R* — imp(X) which has the measurability property that if E is a
measurable subset of X, then {(x, #): T\x € E} is measurable in the
product space X X R™. T is called aperiodic if there is a null set NC X
such that if x ¢ NV and ¢ 5£ 0, then T 5~ x. O will denote a semi-open
cube (or possibly a rectangle) in R™ centered at the origin. If F C X,
then ToF denotes () e T'\F. Call T F disjoint if {T ,F} .o is disjoint. The
set F' is a O-set if T,F is both disjoint and measurable in X. (Warning:
There are measurable sets F' for which T,F is not measurable; e.g., let
X =10,1] x [0, 1], Ty(x,y) = (%, y + t) (mod 1) forte R, O = [—1, 1),
and FCJO0, 1] x {0} a linearly nonmeasurable set). Our version of
Rokhlin’s theorem for n-dimensional flows takes the following form.

Tueorem 1. Let T be an aperiodic n-dimensional flow on X. Then for
any rectangle Q C R™ and € > 0, there is a set F C X such that TyF is
disjoint, measurable, and pw(ToF) > 1 — e. Furthermore, on T,F the
measure p is the completed product of a measure on F with Lebesgue measure

on Q.

The last statement of the theorem means the following. There is a
natural bijection ¢: F X Q — T F defined by ¢(x, t) = T\x. We assert
that there is a measure ur on F such that if m, denotes Lebesgue measure
on O, then both ¢ and ¢~! are measurable measure preserving maps
between (F' X O, ur X mp) and (ToF, p). Thus F is “‘really” transversal
to the flow, and our intuition will not be misled.

Before starting the proof, let us deduce some convenient consequences
of this result.

CoroLLARY 1. For every x € X, the orbit O(x) = {T\x:t€ R"} of x
has measure 0.
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Proof. Fix a cube Q in R" Then for any € > 0 there is a Q-set F
with u(ToF) > 1 — e. Since R" contains at most a countable number of
translates of O, F N O(x) is at most countable, so that u(7ToF N O(x)) = 0.
Hence for every e > 0 the set O(x) is contained in the set

[ToF N O(x)] U (X\T,F),

which has measure less than e. This implies u(O(x)) = 0. Q.E.D.

If 4" denotes the o-ideal of null sets of 2, then the measure algebra
2|A" is a complete metric space under the distance p(E,F) =
w(E\F) + pw(F\E). The next corollary shows that a measurable n#-dimen-
sional flow induces a jointly continuous flow on the measure algebra.

CoroLLARY 2. The map R* X Z|AN — X[ AN given by (t, E)+> T ,E
is jointly continuous.

Proof. Since ToF is isomorphic to F X Q, joint continuity on ToF
follows from that of translation by elements of Q of sets in F X Q. The
Corollary follows by observing that since w(X\ToF) can be made
arbitrarily small, the error introduced by ignoring X\T,F can also be
made arbitrarily small. Q.E.D.

The techniques here can be applied to flows with other locally compact
abelian parameter groups. T'o be specific, let G be a separable locally
compact abelian group. A measurable G-flow is a homomorphism
T: G — imp(X) such that if E is a measurable subset of X, then
{(x, g): T(g)x € E} is a measurable subset of X X G. Separability of G
is included to assure the measurability of some constructions. Let H be
a closed subgroup of G such that G/H is compact, and O be a Borel
measurable subset of G with compact closure such that the quotient
map G — G/H is bijective on Q. This means that the translates of Q by
elements of H “tile”’ the group G. A good example to have in mind for
Q is a semi-open rectangle in R"®, which tiles R™ under a discrete sub-
group. In this setting, Rokhlin’s theorem takes the form that if 7 is an
aperiodic G-flow, then for any € > 0 there is a set F C X such that ToF
is measurable, disjoint, and u(7ToF) > 1 — e. Furthermore, if G is
compact, we can ignore the € and actually find an F so that T,F is an
invariant set with u(ToF) = 1. Easy modifications in the proof here
shows this general statement is true for G = R X Z™ X K, where
n, m > 0 and K is a finite group, and quotients of these groups.
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To begin the proof, first observe that we need only prove the theorem
for cubes. For suppose QO is a rectangle. We lose nothing by assuming Q
is centered at the origin, say Q = [T;_q [—7;, 7;)- We will almost fill a
cube with disjoint translates of Q and apply the theorem to this cube.
There are odd integers k; and a real number » such that » > k#; and
Ry ok, > (1 — €/d)rm. If Q, = [—r, 7)?, we can find a Q,-set F,
such that (T Fy) > 1 — /4.

If

A = (@it s i) G € Z, L | < Ml — 1), 1 < i < ),
and F = T F,, then F' is a O-set and

WToF) = o8N (T o)

€ €\?
> (1 — ?) Dikyry e ko (2r)8 > (1 - T) >1—e

We now prove that ‘“‘close to”” any set of positive measure lies a O-set
which flows through a fixed proportion of the set.

Lemma. If Q is any cube in R* and E C X has positive measure, then
there is a Q-set F such that F C ToF and W(E\T3oF) = 0.

Proof of the Lemma. 'The main idea is to introduce a separable metric
d on an invariant subset of X of full measure which is compatible with
the measure structure of X. Under this metric 7 will be continuous,
and we will exploit continuity and compactness.

We will now define d. Let {M,}{" be a separating sequence of mea-
surable sets in X. This means that if x and y are distinct points of X,
there is an ; which contains exactly one of them. Let y; denote
the characteristic function of M; . For j, k > 1 and t € R define

s ) = m(BY [ T s

where B, is the ball of radius 1/k in R Since T is measurable, the
function y;(7T'x) is measurable on X X R"™. Hence by Fubini’s theorem,
there are null sets N, such that if x ¢ N;, then x,;(Tx) is a bounded
measurable function on R”. Observe that each IV; is invariant under T,
ie., T\N; C N; for all e R* Hence X, = X\U{ IV; is an invariant set
of full measure. Thus, for every x € X, and every ¢, f;;(x, t) is defined,
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continuous in ¢, and 0 < f;(x, t) < 1. Let B = B, . For x, y € X, define

dx,3) = 3 2 sup | fulw, ) — ful, O

j k=1 t

This is clearly a pseudometric on X, . By Weiner’s theorem [17, Theorem
III""] there are null sets L; such that

fimm(B) > [ (T dt — xi(x)
By

for all x¢L;. If L = Uy L;, then {(x,t): TxeL} is a null set in
X, X R* Hence, by Fubini’s theorem there is a null set N C X, such
that if x¢ N, then T,¢L for a.e. . Clearly N is invariant, and thus
X, = X\ is an invariant set of full measure. We claim d is a metric
on X; . For suppose x and y are points of X, with d(x, y) = 0. There is a
towith |, | <land T\ x ¢ L, T y ¢ L. Using Weiner’s theorem together
with d(x,y) =0, we see x;(T,x) = x;(T, y) for all j. Since the y;
separate points, this forces 7, x = T, y and hence x = y. This shows
d is metric. Since X, is an invariant set of full measure, we can assume
from now on that it is the whole space X.

In order to prove the separability of (X, d), we introduce the space Y
of doubly indexed sequences {f;,(t)} of continuous functions from B to
[0, 1]. Then Y is a complete, separable metric space under the metric

BN (e = 3 25 sup | fult) — o).

The continuity of fj;(x, t) in ¢ implies that (X, d) is naturally a subspace
of (Y, dy) under the identification x <> {f;;(x, ¢)}. This establishes the
separability of (X, d).

For fixed x € X, the continuity of f;(x, ¢) in ¢ shows that the map
R* - (X,d) given by t+— T 1is continuous. Actually, the map
R X (X, d)— (X, d) given by (¢, x)+—> Tx is jointly continuous, but
do not need this stronger statement.

As a final remark about d, we note that the balls of d are measurable.
For if B, is the set of rational points in B, then B can be replaced by
B, in the definition of d. This, together with the fact that fj,(x, ) is
measurable in x for each ¢, shows that d(x, y) is a measurable function of «.

Now let QO be any cube in R" centered at 0, and let EC X with
w(E) > 0. We start by obtaining a Q-set F such that F C T,E and
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wW(E N ToF) > 0. Let H be the closure of 40\3Q in R”. The idea is to
find a set D C E of positive measure which in disjoint from 7 D. Then on
each orbit D appears in lumps spaced a certain distance apart. I will be
the union of the barycenters of these lumps. The spacing will assure us
that T F is disjoint. The way we define F will give the measurability of
ToF, and the barycenter construction implies ToF contains D, and so
ToF intersects E in a set of positive measure.

By compactness of H and continuity of the flow, Tjx is a compact
subset of X. Aperiodicity of T shows x ¢ T},x, so

d(x, Tyx) = inf{d(x, y): y € Tyx} > 0

for all x € E. Since d(x, Tyx) is measurable, there isa 8§ > 0 and E,C E
such that p(Ey) >0 and d(x, Tyx) =6 for xe€ E,. Since (X, d) is
separable, it can be covered by a countable number of §/4 balls, one of
which must intersect E, in a set of positive measure. Thus there is a
D C E, such that w(D) > 0 and diam (D) < §/2. This shows D N T,D =
@ . For suppose xe D N\ TyD,say x = T, y where he H, y € D. Then
d(x, y) < 6/2 since diam(D) < §/2, while d(x,y) =d(T,y,y) > 8
since y € D.

By Weiner’s theorem we can remove a null set from D in order to
assume

lim m(B,) " [ xo(Tew)dt =1
k-0 B,

for all x € D. Therefore, if x € D we have
m{teQ: Twe D} >0 and {te30\Q: Twe D} = &. @)

The second part follows from D N\ TyD = @. For x € X define D, =
{teRm: Tixe D}. Let Q- ={teQ:t; <0}, O;+ ={teQ:t; > 0}. We
now define

F={xeX:m(D,NQ;) =m(D,NO;), 1 <j<n}.

This means that x € F if and only if O is the barycenter of D, N Q. We
will verify that Fis a Q-set, F C T,E, and w(E N ToF) > 0.

We first show that TGF is measurable. Let ;*(x) = m(D, N Q;%),
which is a measurable function of x. Note that ;# T x) is continuous
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in t. Then if Q, is the set of rational points in O, we have

ToF = ) Tifv: dst(x) = b5 (%), 1 <j <}
te Q

= VU s T — (T < o 1 < <,
m=1 teQ,

which is measurable. To see the last equality, observe that by compact-
ness of Q a continuous function on Q (in this case ¢, H(T_x) — ;~(T_x))
vanishes somewhere on Q if and only if it is arbitrarily small on Q, .
(This is essentially the proof that a function which is measurable in one
variable and continuous in the other is jointly measurable). By condition
(*), if x € F then Tyox N F = {x}. This shows that T,F is disjoint. For
if 5, t€Q, and x, yeF with Tox = T,y, then y = T,_x € Thox, so
y = x, and then aperiodicity shows s = ¢. If x € D, then (*) shows that
D,NQ has a barycenter at some f,€Q and that T, xeF. Hence
D CTyF, so that W(EN ToF) > w(D) > 0. If xeF, then 0 is the
barycenter of D, N, a set of positive measure. Hence there is a
tye —O with T x € D, so that x € ToD. Thus F C ToD C T,E.

We next use a maximality argument to show that we can reach almost
every point of E by flowing F by 30. Choose a O-set F' contained in T,E
which maximizes w(E N ToF). This means that if F, contains F and is a
O-set contained in ToFE, then w(E N ToF,) = w(E N T,F). This is pos-
sible since an increasing countable union of Q-sets is a Q-set. Let
A = E\T,,F. Suppose u(A4) > 0. By replacing E by A in the argument
above, we can find a Q-set Fy C T, A C ToF with u(4A N ToF,) > 0. Now
ToFyC TyoA and Ty,o0A N ToF = . Hence F; = F U F, is a O-set
contained in T,FE and containing F' with

W(E O ToFy) = W(E A ToF) + p(A 0 ToFy) > p(E 0 TF).
This contradiction to maximality of F proves u(A) = w(E\T3oF) = 0,
completing the proof of the lemma.

Proof of the Theorem. 1f we put E = X in the lemma, we find that
for any cube Q there is a Q-set F with u(T'3oF) = 1, so that u(ToF) > 3.
Let

o = sup{f: for any cube Q there is a O-set F with u(T,F) > B}.

Then a > 3-*. We will show « = 1 by using the lemma to pick up a
fixed proportion of the measure of the complement of T,F. That is, it
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is enough to show that if B is in the set defining «, then so is
B+ 41 —B)

Let Q = [—r, r)* be given. Let y > 0 be a number which will be
specified later. Choose k odd and so large that m([k + 6]0)/m(Q) < 1 + y.
Applying the assumption on 8 to kQ, there is a kQ-set F' with u(T,0F) = B.
If A ={2f; 0 2n): 1 J; | < 3(k; — 1)}, then Fy = T,F is a O-set and
W(ToFy) — p(TyoF) = B. Now

_m([k + 6]

(T v 0) < ~ m(kQ)

819 \(T\0F) < (1 + ) W(TyoF).

Applying the lemma to E = X\T(,¢0of and O, we see there is a O-set
F, with F;, C ToFE and E C TyoF, a.e. Now T,F; C T,,FE and

TooE N ToF, = &,
so that F, = F, U F; is a O-set. Since E C T;,F, , we have

w(ToFy) = 37"w(E) = 371 — (1 +y)B] > 47(1 — B)

if v is chosen small enough. Hence F, is a Q-set with

w(ToFy) > B +47(1 — B).

Thus we have shown that if € > 0 is given, there is a O-set I with
W(ToF) >1 — e

All that remains is to prove the last statement of the theorem. We
will put a measure space structure on F' and check some admittedly
tedious measure theoretic details.

Define Xy ={FyCF: ToF, €2}, and for Fye Xy put pg(F,) =
m(Q) (T oF,). If p, denotes the restriction of u to ToF, we claim
w, = pp X mg, where X denotes the completed product measure. The
proof that T,F is measurable applies equally to any subrectangle O, CQ
to show T F is p, measurable. If ./, denotes the Lebesgue measurable
subsets of O and 2, the restriction of X' to T, F, then rectangles of the
form A X B, A€ ZF and B € .#,, are p, measurable with

nr X mo(d X B) = p,(4 X B).

Hence the o-algebra Xr X .#, generated by these rectangles is contained
in 2., therefore so is its completion X & 4, , and on this pr X mg
and p, agree.
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We want to show conversely that 2, C 2y ® 4, . Let us identify
F x Q with TF by ¢(x, t) = T x. The preceding paragraph shows that
@1 is measurable and measure preserving. Let ¥ = T,F X R" with
measure p, =, X m on 2. @ .#. The transformation S: Y —»Y
defined by S(x, t, u) = (x, t, t + u) is an invertible measure preserving
transformation on Y. This follows by verification on rectangles, passing
to the generated o-algebra, and then to its completion. Let E C T,F be
u, measurable. Since T is measurable, E* = S{(«, ¢, u): T, ,x € E} is py
measurable. The point about E* is that it is independent of u, and that
its ¢ cross section E* = {(x, u): (x, ¢, u) € E*} equals E for every t €Q.
Also E** = {(x, t): (x, t, u) € E*¥} equals E, X O = ToE, , where E, =
T_,E N F. By Fubini’s theorem, E** is u, measurable for a.e. u, so that
almost every cross section E, of E is ur measurable. Furthermore, we
have the formula

polB) = [ () dmofu). (1)
This follows again by Fubini’s theorem since

Q) mAE) = [ iAE¥) dmolt) = pulEX) = [ plE*) dmo(u)

= m(Q) | pelB) dmlw)

We could now easily show that any set in X, is equivalent to one in
2y ® M, , but this is not quite enough to prove that ¢ is measurable.

Let 2, ={ECY: E,is pr X m measurable for a.e. t € Q}. From the
above, rectangles of X, X 4 are in X, and since X, is a o-algebra we
have 2, X # CZ,. We claim 2, ® # C X, . For this it suffices to show
that if E€ X, X M, py(E) =0, and D C E, then De 2, . To prove this
we need the fact thatif E€ 2, X A and py(E) = 0, thenur X m(E) =0
for a.e. teQ. For since E€ 2,, E, is pr X m measurable except for ¢
in a null set N,, and by Fubini’s theorem E(, , = {u: (x, t, u) € E} is m
measurable except for (x, ) in a null set N, of u, measure 0. Since
w(INp) = 0, (1) shows that there is a null set N3 C Q such that if £ ¢ N;,
then up(N, ) = 0. Then if ¢t ¢ N, U N,, since E, is ur X m measurable
we may apply Fubini’s theorem to obtain

ur X m(E) = [ m(Bp) dur(x) = 0.

Now if D CE, then D,CE,, and pr X m(E,) = O for a.e. £. Complete-



LOCALLY COMPACT MEASURE PRESERVING FLOWS 185

ness of pur X m then implies D, is pr X m measurable for a.e. #, so
DelZ,.

Now note that if ECZ,, then E¥elZ, ® # CZ2,. Hence E =
E* e Xy ® M, for almost every t € Q, proving 2. C 2y ® A, .

There is a shorter, alternative proof that 2y ® #, = X, using
Rokhlin’s Theorem on Bases [15]. Recall that {M,} is a separating
sequence of measurable sets in X. From the collection & of finite
intersections of the M; and their complements. By removing an invariant
null set, we may assume each set in & is measurable on every orbit of 7.
For E € & define g for T'\x € T,F by

ge(Tx) = fo xe(Tsx) dt.

Note that g does not depend on u. We claim gy is p measurable. Let
0,. = (1/m)Q, and define gz, on T, F by

gem(Tut) = f XelTewu) dt - 40y, ¥EP).

Measurability of the flow shows that g, ,, is measurable on T, F. Extend
g to all of THF by periodicity. Continuity of g, in the flow parameter
shows that for all x € F we have

lim sup | gE,m(Tux) — ge(x)] = 0.

Hence gg,, — gr pointwise, proving measurability of g .
Let 2 C 2¢ be the collection of subsets of F of the form

(xeF:a < gg(t) < b},

where a and b are rational and E € &. If & did not separate points of F,
there would be an x and y in F for which gx(x) = ge(y) for all E€é&.
A standard argument shows this would yield an isomorphism U:
Tox — Toy for which U(Tox N E) = Tyy N E (at least after removing
a null set from each). This means T x and U(Tx) are never separated
by & for almost every ¢ € Q. But this contradicts the point separating
property of {M}, and shows & indeed separates points of F.

If Q, is a subrectangle of O with rational endpoints and D € &, then
ToD N ToF = ¢7%(D X Q) is in X, . The countable collection # of
such sets separates points of the Lebesgue space (ToF, 2, , u,), and the
measures ur X mg and u, agree on Z. By Rokhlin’s Theorem on Bases
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[15], the completion of the o-algebra generated by &, namely 2y ® 4, ,
is all of 2, . This completes the proof of the theorem.

3. ApErioDIC DECOMPOSITION

We will show that if T"is an arbitrary #-dimensional flow on (X, 2, p),
then X decomposes into invariant subsets on each of which T acts
aperiodically when factored through a closed subgroup of R". These
subsets have a natural Lebesgue space structure which is preserved by
T, so the general version of Rokhlin’s theorem, using quotients of R* as
parameter group, applies to them.

Let T be an n-dimensional flow on X. The construction of the metric
in the proof of Rokhlin’s theorem did not depend on aperiodicity of the
flow, so there is a separable metric d on an invariant conull set, which
we may assume is all of X, for which T is continuous. For x € X define
H, tobe{t e R*: T'\x = x}, and let ¥ denote the class of closed subgroups
of R™ Then continuity of T implies H, € € for all x. Notice that H,
depends only on the orbit of x, i.e., Hy , = H, for all t. For H € € the
set Xy = {x € X: H, = H} is invariant. The restriction of 7" to X, then
factors through the quotient map R"™ — R"/H, and the induced
R*/H-flow on Xj is aperiodic. We will prove that the partition ¢ =
{Xy: He €} of X is measurable in the sense of Rokhlin [15]. That is,
there is a sequence of measurable sets {E, } such that

gﬁ E:,:": e = 1) = g,

m=1

m

where E*! = E, E~! = X\E. This will induce a Lebesgue space structure
on each X (Rokhlin’s “canonical system of measures’) and show that
X is the direct sum of the X, as defined by Halmos [4]. This decomposi-
tion is the aperiodic analog of Halmos’ ergodic decomposition.

THEOREM 2. The partition § = {Xy: H € €} is measurable. Hence there
are Lebesgue space measures py on Xy and pg on € such that if Ee€ X,
then Xy N E is py measurable for pg almost every H, py(Xy N E) is a
e measurable function, and

WE) = [ pn(Xes 0 B) dia(BD).

Furthermore, T | Xy is a measurable flow preserving the measure py .



LOCALLY COMPACT MEASURE PRESERVING FLOWS 187

Proof. Once ¢ is verified to be measurable, the rest follows using the
measurable partition machinery of Rokhlin or the results of Halmos.

Let A be a closed set in R*. We first prove that {x: 7'x = x for some
te A} e 2. For fixed t, d(x, T)x) is a u measurable function. Let 4, be
a countable dense subset of A. Since d(x, T,x) is continuous in #, we
have inf{d(x, Tx): t € A} = inf{d(x, T'x): t € Ay}. Countability of A,
shows this is again a u measurable function. Hence

{x: Tyx = x for some te A} = {x: }£,4f d(x, Tyx) =0} e 2.

Denote by kB the closed ball in R™ of radius &, and for H e % let
Hm = H + {te R™*: | t| < 1/m}. For fixed k and m a simple compactness
argument applied to {H™ N kB: H € ¢} shows that there is a finite
collection €, C € such that if K € €, there is an H € %}, with

KN kBCH™N kB, HnN kBCK™N kB. &)

If we let € = {Ke¥: KN kBCH"NkB}, then we claim
{€rmu: ks m =1, He%,,,} is a countable point separating class of
subsets of €. For if K and K’ are different elements of %, choose k large
enough so that K N kB % K’ N kB. By symmetry, we may assume there
isat, e (K\K') N kB. Choose m such that 2/m < dist(¢, , K’). There are
H, H €%¥,, such that (*) holds for K, K’ respectively. Hence
dist(¢, , H) < 1/m, dist(t,, H') = dist(¢,, K') — 1/m > 1/m. Thus
H # H' and therefore K and K’ are separated by {€},,,}-

Let E,,,y = {x: H, € €4} Since kB\H™ is closed, E,,,, is measurable
because it is the complement of {x: T')x = x for some e kB\H™}.
Measurability of ¢ now follows from measurability of the Ej,,, since
{E,,.u} generates £.

Remark. The sets E,,,, are invariant under 7. Thus if 5, denotes
the partition of X into ergodic components under T, then each E,,, is
an 7, set. Hence ¢ is refined by 7, , that is, £ <<%, . In particular,
suppose T is ergodic, so that 7, is trivial. Then there is exactly one
closed subgroup H of R"™ such that u(Xy) = 1. In this case the flow is
“really” an aperiodic flow on R*/H. For n = 1, this shows ergodicity
implies aperiodicity. When n > 1 this is no longer strictly true since we
must factor T through a quotient group R"/H to obtain aperiodicity.
Thus for n-dimensional flows, if T, is never the identity for ¢ = 0, then
ergodicity implies aperiodicity.
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4. MEASURABILITY OF FacTor Frows

If S is a measure preserving transformation on (X, 2, n) and &7 is a
completely invariant o-subalgebra of X, then .S is also measurable (and
of course measure preserving) on (X, o7, u). However, this does not
always happen for flows. For example, let X be the unit circle, with
Lebesgue measure u, T (¢ € R) rotation by ¢, 2' the o-algebra of Lebesgue
measurable sets, and &7 the countable and cocountable subsets of X.
Then .7 is completely invariant under {7}, Since any set in &7 &) #,
where .# denotes the Lebesgue measurable subsets of R, depends on
only a countable or cocountable set of X coordinates the flow on
(X, o7, n) is not measurable since, for instance, for each x, € X, the set
{(x, t): T\x = x,} is not in &/ ® .#. The basic obstruction to measur-
ability on a factor is the presence of null sets which are transversal in a
nonmeasurable way to the flow. The following results shows we can
obtain measurability by removing some of the null sets in the o-
subalgebra.

Two o-subalgebras are equivalent if each set in one is equal to a set
in the other up to a null set.

THEOREM 3. Let T be an n-flow on (X, X, n), and suppose that o/ is
an invariant o-subalgebra of 2. Then there is a complete invariant o-sub-
algebra </ of of which is equivalent to s/ and such that T is a measurable
flow on (X, <, ).

Proof. Let {E;} be countable and dense in .2Z. Construct a pseudo-
metric d, similar to the metric d in the proof of Rokhlin’s theorem as
follows. Remove an invariant null set in order to assume that yg (7'x) is
measurable in ¢ for each x. Then the functions

1 .
gin(x, 1) = (B fB Xe(Torex)dx  (j, k= 1)
i

are defined, measurable in x, and continuous in ¢. Put

dox, ¥) = ), 277 % sup | gulx, 1) — gil, t)]-
Jok=1 teB
Then d, is a pseudometric on X under which the map #+— T x is con-
tinuous for fixed x.
Form the countable class & of sets of the form {x: r < g;(x, q) < s},
where j, k > 1, r < s are rational, and ¢ is an n-tuple of rationals. Then
& consists of closed sets since g;.(«, t) is continuous in x for fixed ¢, and
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& C o/ since &/ is invariant. Let &4, be the c-algebra generated by
{T\E: E€&,te R"}. Since .2, contains a set equivalent to each E;, it is
an invariant o-subalgebra of &7 which is equivalent to 7. Forming %/,
has removed the null sets in &/ which cause measurability problems.

We claim that if E={x:r <g;(x q) <s}ed, then T-E =
{(x,2): Txe E} is in A, @ M. Let C), =[0,27%)", and C,° be the
rational points in C;, . Note that since g;(T,x, t) = gu(x, t 4+ u), and
Z;x 1s continuous in ¢, we have

ToE = {x:v < gulx, ¢ + t) < s for some t € Cp}
< g.‘ik(x) q + tO) <
= U {wr<gulx q+1t)<s}

t,€Cy0

which shows that T E € &, . Let Cy,, = 27%m + C,, where m € Z", and
put

= {x: 7 s for some t, € C,%}

F, = U Te, E X Crm »
mez"
which is a set in &7, X . Clearly T'E CF,, for each k, and {F,}
decreases. If (x, t) € () F, , then for each k there is an ¢, with | ¢, | < 2%
such that 7', x € T\E. Because T\E is closed, letting & — oo shows that
xe T\E. Hence (x,t)e T7E, and thus F,~ T-'E. This proves
TEesly X M.

Since T-1¢ C o/, X #, it follows that T-Lo/, C &/, X M. Let o/ be
the completion of 7, with respect to u. If N € &/ with u(N) = 0, then
there is an Nye &, such that N CN, and p(N,) = 0. Since
TINCTINyey X M and p X m(T71Ny) = 0, we have

T-'"Nesdy @ M CAd QM.

This shows .o/ satisfies the conclusions of the theorem, and completes
the proof.

Remark. This result shows that Rokhlin’s theorem holds for non-
atomic factors of aperiodic flows as well. For if 27 is a nonatomic factor
of T, the above says that by removing some null sets we may assume T
is measurable on (X, &7, u). If ¢ denotes the measurable partition of X
induced by 7, then T defines an aperiodic measurable flow on the
nonatomic factor Lebesgue space (X/¢, & , pg). If F is the set produced
by Rokhlin’s theorem applied to this flow, then the inverse image of F
under the quotient map X — X/¢ satisfies the conclusions of Theorem 1.
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5. Factors oF FINITE ENTROPY

The restriction of an n-flow T to Z» defines an abelian group of
measure preserving transformations. Conze [3] and Katznelson and
Weiss [6] have defined the entropy of such a group on the following way.
The entropy of a partition « is denoted by H(«). If H(x) < 0, then
limg, o | O |TXH(V peo T)no) exists, where “Q — 00’ means rectangles in
Z™ whose sides become arbitrarily large. This limit is denoted by
KT | Z" o). We define A(T | Z") to be sup{i(T | Z", «): H(x) < o0},
and the entropy A(T) of the flow to be the entropy A(T | Z") of the
discretized flow. A basic theorem in the subject is that if « generates
under T'| Z», then A(T | Z) = (T | Z™, «) [3, p. 18].

It is easy to produce factors of finite entropy for the discretized flow.
For example, the entropy of T'|Z" on the invariant o-subalgebra
generated by o is bounded by H(a). However, this o-algebra may not
be invariant under the entire flow, and obtaining a factor of finite
entropy for the flow is not so simple. The following theorem shows
that this can always be done.

THEOREM 4. If T is an n-flow on X, there is a nontrivial partition «
of X with finite entropy such that \/ {T\a: t € R*"} = \/ {T,,a: me Z"}. Thus
T has a factor of finite entropy on which it is measurable.

Proof. The second statement follows easily from the first. For if o7
denotes the o-algebra corresponding to the partition \/ {T\a: t € R},
then o7 is invariant under 7. Theorem 3 shows that we may assume T
is measurable on (X, &, ). Since x generates &/ under T | Z*, statements
from the first paragraph show that

WT|Z"on o) = h(T| Z", o) < H(e) < oo.

We may aslo assume T is aperiodic. For the following proof shows
H(«) can be bounded by a constant M independent of 7. If ¢ denotes
the aperiodic decomposition of X from Theorem 2, then by working on
the fibers of ¢ we can construct « so that the first statement of the
theorem holds on fibers of £. Then H(x) << [/ H(oc) dpe(C) < M < o0,
where o is the restriction of « to C € £, and p, is the quotient measure
on X/¢.

We use the idea of the name of a point with respect to a flow and a
partition. If « is a measurable partition of X and 7T is an n-flow, for
each x € X define 4,: R® — a by T\x € A,(t) € a. For almost every x the



LOCALLY COMPACT MEASURE PRESERVING FLOWS 191

function A4, is measurable, and is called the continuous «-name of x. The
restriction A4, | Z™ of A4, to Z™ is termed the discrete a-name of x. The
idea of the proof, due to Ornstein, is to construct partitions o* converging
to o for which the discrete of-name of a point determines its continuous
a-name with increasing accuracy. In the limit, the discrete a-name of a
point will exactly determine its continuous o-name. Hence two points
separated by {T,a:te€ R"} must have already been separated by
{T,a:me Z"}, that is \/ {Tja:t e R*} = V {T,,a: m e Z"}.

Choose ¢, \ 0 such that Y;e, < oo, and positive integers m; 1 oo
such that

> 1 o 1om 10"

< > lo < © 0
my e ’ k=1 my" e, & my e ’ €1 ke

k=1

Let O, = [0, m;)". We construct inductively partitions o converging to
the desired partition a.

Construct «! as follows. Use the Rokhlin theorem to find a Q,-set F;
with (T F;) > 1 — ;. Choose numbers #;, 1 <i <7 =[], such
that ¢, < 3061_1, 20 < t;, — t; <30, t; =0, and the fractional parts of
the #; are ¢; dense in [0, 1). Let

Ay =U{TFtelty, t, +10) X = X [t; , t;, +10), 1 <iy,..., i, <7},

B = X\4,, and o = {4,, B}. Define a 1-block in the continuous
ol-name of x to be the restriction of 4, to t, + Q,, where T, x € F, .
The 1-blocks are uniquely determined by the continuous a!-name, and
they are determined up to a translate of at most e; by the discrete
ol-name.

Continue the construction to o® as follows. We already have produced
o1 ={A4,,..., A;_,, B}, where the continuous of~!-name of a point
breaks up into (B — 1)-blocks which are determined by the discrete

oF~1-name of the point up to a translate of at most ¢;,_, . Find a Q;-set F},
with (T F) > 1 — € - We can measurably modlfy okl to assume
that each (k — 1)-block in the o*~l-name of points in F, begins at a
multiple of 2¢,_, . Put all of the (k& — 1)-blocks which intersect
Tio,30:)F), into B. Pick [e;'] numbers ¢; such that 20 < #;,, — ¢; < 30,

0< tt < 30¢zY, ¢, = 0, and the fractlonal parts of thc t; are ¢, dense in
[0, 1). Define

Ay =U{TFp:telt,, t;, +10) X = X [t; , t; +10), 1 < iy, 1 < &'}
and let of = {4, ,..., 4., B}, where B = X\(4, U -+ U 4,).
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The continuous o*-name of a point breaks up into k-blocks beginning
with a point in Fj, . Also, the discrete a¥-name determines the 4, portion
of the k-block up to a translate of at most ¢, and since the (k — 1)-
blocks are determined within an error of €,_; and occur at multiples
of 2¢;,_,, they are exactly determined inside the k-block. Thus, the
discrete o¥-name determines k-blocks to within e .

The change in partition distance at the kth state is estimated by

271 3071 1011
T0 €1 +

k k-1
a — « <
| ] €,"m" €,"m;"

which is summable by our choice of ¢, and m,, . Hence the o;, converge

in partition distance to some partition o. Since

10" 10"

lo
eknmkn g Eknmk'n ’

—u(4y) log p(4,) < —

o has finite entropy. Finally, we claim that the discrete a-name of a point
determines its continuous a-name. For the continuous «-name breaks up
into k-blocks. Each k-block is contained in a (¢ -+ 7)-block for all large 7.
This (k + 7)-block is determined by the discrete a-name to within
€14, , S0 the original k-block is determined by the discrete o-name to
within €, . Since this is arbitrarily small the discrete «-name determines
k-blocks exactly, hence the continuous a-name. This completes the
proof of the theorem.
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