FINITARILY SPLITTING SKEW PRODUCTS

D. S. Lind*

§1. 1Introduction

Skew products with ergodic automorphisms of compact abelian
groups arise naturally in several contexts. For example, sup-
pose S 1is an automorphism of the compact group G, and H
is an S-invariant closed subgroup. By taking a measurable
cross section to the quotient map G - G/H, the transforma-
tion S can be regarded as a skew product of the quotient
automorphism SG/H with the restriction SH of S to H.

We can study S by studying the simpler components,
and SH’

method was used in proving that ergodic automorphisms of com-

S6/u
and how they are joined in a skew product. This

pact groups are measure theoretically isomorphic to Bernoulli
shifts [3]. Crucial to this method is the result that if SH
is ergodic, then the skew product S measure theoretically
splits into the direct product SG/H x SH.

In this example, however, there is additional structure.

The base map S is continuous, and the cross section to

the quotient mag/gan be chosen to be almost continuous (or
finitary), i.e., continuous off a meager null set (Theorem 2).
It is natural to ask whether the isomophism of S with SG/H
x SH can also be made almost continuous. We show that the

answer is "yes," and prove a general almost continuous split-
ting theorem assuming a mild condition on the base map.

One of our motivations is the search for "natural" examples
of transformations that are measure theoretically but not al-
most continuously isomorphic to Bernoulli shifts, i.e., that
are Bernoulli but not "finitarily Bernoulli." Ergodic toral
automorphisms with off-diagonal 1's in Jordan blocks of eigen-
values of modulus one (called central skew automorphisms) do

not obey weak specification [5], and fine enough smooth
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partitions are never weak Bernoulli. Hence they are natural
candidates for such examples. However, our work shows that a
central skew automorphism is almost continuously isomorphic to
a finite factor of a diagonalizable automorphism. Techniques
developed by Rudolph [6] should be sufficient to show the lat-
ter to be finitarily Bernoulli, and thus prove that all ergodic
toral automorphisms are finitarily Bernoulli.

Skew products are closely related to cocycles, and the
splitting of skew products can be cast in the form of "straight-
ening out" certain cocycles with values in the affine group of
G. In §3 we formulate this precisely, and show how this sug-
gests analogous results about skew product actions of groups
more complicated than the integers.

In §4 we give the modifications in the specification ar-
gument of [4] needed to get finitary splitting, and in §5 are
the necessary lemmas to go from automorphisms with specifica-
tion to general ergodic automorphisms.

In §6 we show that if the group automorphism is "hyper-
bolic" in a certain general sense, then skew products with it
finitarily split with no conditions on the base map. The proof
uses a Neumann series argument shown to us in the toral case
by W. Parry.

The author wishes to give his hearty thanks to the organ-
izers of the Special Year in Ergodic Theory at the University
of Maryland and to the Workshop on Ergodic Theory, Institute
for Advanced Studies, Hebrew University, Jerusalem, July-August

1980, for their support while this paper was being written.

§2. Finitary splitting

We first set up the general framework to state the theorem.
Let (X,d) be a compact metric space, and H be a nonatonic
Borel probability measure on X. By throwing out the largest
open p-null set, we can and will assume that L is strictly
positive on nonempty open sets. In particular, if B(x,¢)
denotes the ball of radius ¢ > 0 centered on x € X, then
w(B(x,e)) > 0.

An almost continuous (or finitary) automorphism of (X,H)
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is given by a pair (Xl’U)’ where X\Xl is meager and null,
U: Xl - Xl is a homeomorphism in the induced topology on X
and U preserves the trace of p on X

l r
1 In this case we
will call U a map of X, 1t being understood that U is
defined only up to an invariant meager null set. Two such maps

are finitarily isomorphic if by removing further meager null

sets there is measure-preserving homeomorphism conjugating them.
For further discussion of maps, see Denker and Keane [l]. There
they show that there exists a totally bounded metric 4 on

1
X equivalent to the original metric d such that U 1is

uiiformly continuous on (Xl,dl). Hence U extends to the
compact completion of (Xl'dl)' Therefore we can and will
think of U on Xl as the restriction of a homeomorphism of
a compact metric space (X,dl) to an invariant residual set
Xl of full measure.
From now on we will assume that .U 1is ergodic on (X,u).
Let G be a metrizable compact abelian group (hereafter
abbreviated "compact group") and S be a continuous, algebraic
automorphism of G. Then S preserves Haar measure m on
G. If a: X -+ G 1s measurable, the skew product transforma-

tion U X S: X x G » X x G defined by
(UX(I S)(x,9) = (Ux, Sg+a(x))

preserves p x m.
We showed in [4] that if S 1is ergodic, then U x, S 1is

isomorphic to the direct product U x S via an isomorphism of

the form W(x,g) = (x,9+B(x)), where B: X - G 1is measurable.

This amounts to solving the functional equation
(1) a(x) = B(Ux) - SB(x)

for B, given «a, U, and S.

Suppose now that a: X » G 1is almost continuous, i.e.
continuous after removing a meager null set from X. Then
U x, S is a map, and it is finitarily isomorphic to U x X
if there is an almost continuous solution g to (l). We will
show that such a [ exists if U satisfies the following con-

dition.
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Definition: A map U of (X,d) 1is compressible if for
every positive integer n and every ¢ > 0, there is an ape-

riodic x ¢ X such that diam ij:{O < j = n} < e.

The purpose of compressibility is to guarantee that modi-
fications on long pieces of U orbit during the construction
of B can be made topologically as well as measure theoretic-

ally small.

Theorem l: Suppose U 1is compressible and S 1is ergodic.
Then for each almost continuous skewing function a:X > G
there exists an almost continuous solution B to the func-
tional equation (1). Hence the finitary skew product U x, S
is always finitarily isomorphic to the direct product U x S.

Note that if U has a fixed point X1 which is a limit

of aperiodic points, then small perturbations of x yield

0
long pieces of orbit with small diameter, and so U is com-
pressible. Since automorphisms fix the identity, Theorem 1
applies to the situation described in §1 to show that S is
finitarily isomorphic to SG/H x SH.

§3. Cohomological interpretation

The measurable splitting of skew products in [4] can be
interpreted as "straightening out" certain kinds of cocycles.
Recast in this form, the result is similar to Zimmer's rigidity
theorem for ergodic actions of semi-simple Lie groups [7]. A
beautiful exposition of Zimmer's work has recently been given
by Furstenberg [2]. This interpretation suggests a suitable
framework for questions involving skew product actions of groups
more complicated than the integers Z.

The transformation U gives a measure-preserving action
of Z on (X,p). The automorphism S induces a homomorphism
n from Z to the automorphism group of G by w(n) = s™.
This defines the semi-direct product group % x G with multi-
plication (nl,gl)-(nz,gz) = (nl+n2,gl+Snlg2). This semi-
direct product acts affinely on G by (n,g).g' = Sng' + g.

The skew product U x, S yields a cocycle o: Z x X > % . G
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defined by
wx,9%x,9 = U, 9m,x-9).

This o clearly obeys the cocycle equation

‘n

2
( =
U\nl+n2,x) O(nl,U x)U(nz,x).
More explicitly, o(n,x) = (n,an(x)), where
a (x) = (0™ k) 4 sa (U %) + --. + s la(x)
for n > 1, and a similar formula for n < -1. Thus o 1is

"level-preserving”" in the sense that o({n} x X) ¢ {n} x G,
and every level-preserving cocycle corresponds to a skew product
U x_S.

a

The direct product U x S corresponds to the trivial co-

cycle ~1(n,x) = (n,0). If B: X » G solves (1), put y(x) =
(0,B(x)) € Z x, G. An easy computation shows that an(x) =
B(Unx) - SnB(x), and therefore that

(2) (™) om0 v = tn,x).

Thus o 1is cohomologous to 1 via the coboundary defined
by V¢, i.e., o can be "straightened out."

We remark that proving o 1is cohomologous to the trivial
cocycle is equivalent to solving (1). For suppose Vy: X -
Z x" G obeys (2). If V(x) = (p(x),B(x)), then for n =1
the first coordinates of (2) yield

-p(Ux) + 1 + p(x) = 1,
so p(x) is U-invariant. Since we assume U to be ergodic,
-n
p(x) = ng almost everywhere. Applying S to the second

coordinates shows that B solves (1).
The splitting theorem of [4] therefore says exactly that
every level-preserving cocycle o: Z x X - % x. G is coho-

mologous to one that is independent of X. Zimmer's work [7]
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shows that every cocycle o: H x X - K, where H 1is a suit-
able Lie group acting ergodically on (X,u) preserving u
and K is another suitable Lie group, is cohomologous to one
that is independent of X. The results are similar, but the
groups operating are quite different.

This suggests the following general question. Let T be
a countable discrete group acting ergodically on (X,u), and
m  be a homomorphism from T to the automorphism group of G.
The semi-direct product T x, G acts affinely on G. When
is a level-preserving cocycle o: I' x X » I' x G cohomologous
to the trivial cocycle 7T (y,x) = (v,0)? Equivalently, when
does the corresponding skew product action of T on X X G
split into the direct product action? When T = %n, G 1is a
torus, and w(y) is hyperbolic for y # e we have shown all
cocycles are trivial. However, results available now are quite

fragmentary.

§4. Automorphisms with weak specification

If S obeys weak specification, the measurable solution
B to (1) found in [4, §4] is not necessarily almost continuous
for the following reason. Uncontrolled modifications produced
by using weak specification at each stage of the construction
of B occur in long gaps between Rohlin stacks in X. Al-
though these gaps become measure theoretically negligible, so
the approximations converge a.e., they can also become topo-
logically dense. In fact, this attempted argument for almost
continuity of B breaks down when U 1is an irrational rota-
tion of the circle. For this U the almost continuous solv-
ability of (1) is still in doubt. This is the reason to im-
pose compressibility on U.

First we establish what we need of compressible trans-
formations. We denote the closure of a subset E by cl(E).
A subset F of X 1is almost open if F and X\F agree with
open sets up to a meager null set. This means that the "es-
sential boundary" of F has measure zero. It is easy to see
that for fixed x € X, the ball B(x,8) 1is almost open for

all but countably many values of &§.
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Lemma l: Suppose U 1is a compressible map of (X,d,u).
Let {n.} and {m.} be increasing sequences of natural num-
bers, and ej\ 0. Then there are almost open sets Fj c X of

positive measure such that

(1) {UiFj: —nj < 1ic< mj} is a disjoint collection for
each j,
(i) if 1, = U {Ule: -nj = i< 0}, then

diam[cl( U L )] < e..
kej & J

Proof: By ergodicity and compressibility of U, there

are xj ¢ X with infinite U-orbit such that
. i .
diam{U x.: -n. =< i 0 ./8.
{ 5 j < 0} < sj/

Since (X,d) 1is assumed compact, by taking a convergent sub-
sequence we can assume that there is an X ¢ X such that
d(xj,xo) < aj/8. Continuity of U shows there are 6j > 0,
éj < e./8 such that if Fj = B(xj,éj), then Fj is almost
open and {Ule: —nj < i< mj} is disjoint. Also, u(Fj) > 0
since nonempty open sets have positive measure, which proves

(i). Finally, U{Lk: k =3} c B/x0,3ej/8), proving (ii).

Next we recall the weak specification property.

Definition: A homeomorphism f of a compact metric space

(Y,d) satisfies weak specification if for every ¢ > 0 there

is an integer M(e) such that for every r = 2 and r points
yl,...,yr in Y, and for every set of integers al < bl < a,
=< b2 < srro<oay < b, with a. - bj_l > M(e) (2 = j = 1r), there

isa y €Y with d(fiy,fiyj) = ¢ for aj =i = bj, 1l =3 =r.

For further details about this property, see [4]. We show
there that certain basic group automorphisms have weak specifi-
cation. On the other hand, not all ergodic group automorphisms

have this property [5], answering a question raised in [4].
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For those that do, [4] gives a simple proof of skew splitness.
We indicate here the modifications in the proof of Theorem
4.2 of [4] needed to obtain an almost continuous solution 8

to (1), i.e., to show that the skew product finitarily splits.

Proposition: If U 1is compressible and S obeys weak
specification, then U g S finitarily splits for each almost

continuous skewing function «.

Proof: Two changes in the proof in [4, §4] are needed.
The first is to replace Rohlin towers with Kakutani skyscrapers
to control gap size. The second is to use compressibility of
U to force uncontrolled specification adjustments on pieces
of orbit into a topologically small set.

Suppose a: X - G 1is almost continuous. Choose sj\ 0
with Zej < =, Let M(e) Dbe the number determined by weak
specification of S. For nj = M(aj) and m:.I = M(ej)/ej,
choose almost open sets Fj in accordance with Lemma 1.

For x ¢ Fj define

hj(x) = min{n: n > 0, u"x ¢ Fj} - nj.
Since Fj is_almost open, h. 1is almost continuous on Fj'
Put Ej = U{utx: x ¢ Fio 05 i< hi(a)} = X\Lj.
Now define By: Fp » G arbitrarily but almost contin-
uously. As in [4], Bl extends to an almost continuous func-
tion on E

1
If p 1is a translation invariant metric on G, and

satisfying (1) where defined.

£: E, > G, put HfHEk = sup{p(0,£f(x)): x € Ek}.

We shall construct BZ: E2 -+ G, from which the inductive
step for defining Bk will be clear. The decomposition of
F, into subsets K consisting of those points in F, with
the same return time to F2 and the same entry times
ayre-esay into Fl before returning to F, is an almost

open partition. Thus it is enough to define g, over such
sets K.

Begin by definin ! to be constant on K, and usin
g g 2 g9
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(1) to extend Bé to U{UiK: 0 <1< hz(KH, where hz(K) is the
constant value of h2 on K. Now'B]_is already defined on the blocks.

. a.
i . .
U{U K: aj = i< bj = aj + hl(U JK)}, l <3j<=<r,

a. - b. = M(e,).
j+1 j 1
trol gap size. The calculation in [4] shows that the error

where Note the use of skyscrapers to con-
Bé - Bl on {Uix: aj <1ic bj} is the orbit of a point. By
weak specification, there is an adjustment Bz(x) of Bé(x)

such that this error is uniformly less than for 1 =j<r.

€
1
Since only finite conditions are involved for each K, this
adjustment can be made almost continuously. The new function

32 has the properties that it is almost continuous on E2,
it solves (1) where defined, and |[B,-B,] < €.

2 "1 E; 1
Inductively we obtain almost continuous functions

Bk: E > G satisfying (1) where defined, and with ”Bk+l_BkHEk

< By Hence {Bk} converges uniformly off cl(Uk>ij). The
latter sequence of sets nests down to a point. Hence B =

lim Bk is almost continuous and satisfies (1) a.e.

§5. Extension to general group automorphisms

Not all ergodic group automorphisms obey weak specifica-
tion (e.g. the central skew automorphisms mentioned in §1).
However, each is built up from two basic kinds, namely irre-
ducible solenoidal automorphisms and group shifts, by the proc-
esses of products, factors, inverse limits, and skew products
with basic automorphisms. These basic automorphisms obey weak
specifications, hence finitarily split over compressible base
maps.

The proof in (4] shows that measurable splitting is pre-
served under products, factors, skew products, and the kinds
of inverse limits encountered in constructing general auto-
morphisms. We give here the facts needed to extend this proof
to finitary splitting, and therefore to prove Theorem 1. The
extra ingredient is finding an almost continuous cross section

to a group quotient map. Bord cross sections are well-known,
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but we have been unable to find this result in the literature.

Theorem 2: Let G be a compact abelian group, H be a
closed subgroup of G, and nwn: G - G/H be the quotient map.
Then there is an almost continuous map 6: G/H - G such that

ne 1is the identity.

Proof: Let G have countable discrete dual group T,
and G/H have dual A ¢ I'. Suppose g € G/H, so g: A ->T
is a character. We will give a recipe to extend g to
3: T > T, and then define 6(g) = g. Since §l|, =g, 6 will
be a cross section to n. We will show that there is a meager
null set E ¢ G/H such that 6 1is continuous off E.

Choose {Yk: k = 1} ¢ T that together with A generate
I'. Let An be a subgroup of TI' generated by A and Yyreees

Yn and put A A. We will extend g successively to each

0=
An' and hence yield an extension to T = UAn.

Define §0 =g, and let n =2 1. Suppose g has been

extended to § _,: & 4 - T, consistently in the sense that

(0 =k £ n-1). We will construct §n: A, ~ T.

~ 1 — ~
In-1ta, 7 %
Consider Yn* If there is an integer k such that

Kyp € bpyv

ger. Otherwise define kn = «, Thus kn is the order of

defined kn to be the least positive such inte-

+ i .
n An—l in F/An—l

For k=1,2,..., define a function r: T > T as fol-
lows. Let tO = exp(—ZnigO) where go is an irrational num-
ber within L of L For t = exp(2nig) with -, < o

100 2" P 0=
—50 + 1, define rk(t) = exp(2nie/k). Thus rk(t)k = t, and
ry is continuyous except at tO’ which is close to -1.

If kn < =, define gn(yn) = rkn(gn_l(knyn)). Since
Yn + An—l generates An/An—l' this defines an extension g,
of ﬁh_l to An' Consistency follows because

kn kn
gn(knYn) = gn(Yn) = Tk (gn-l(knYn)) - gn—l(knYn)’

n
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and Zyn n a 1s generated by knYn'

n-1
If kn = o, define gn(Yn) = 1. In this case Zyn n An-l
=0, so Qn is automatically consistent.

This sequence {§n} of extensions converges to a limit

g=6(g): T >»T such that §|A = §,. Of course 6 depends
n

0

A discontinuity of 6 on G/H can be introduced at stage

on our choice of Y, and &

n only if kn < = and én—l(knYn) =ty the point of dis-
continuity of Ty We will show that (a) the set En of
n
g € G/H such that §n_l(knyn) =t is contained in a coset
of a nowhere dense null subgroup of G, and (b) off Un>lEn
= E the map © 1is continuous.
(a) If kn < », let a(n) = kn' If krl = », put af(n)
= 1. Let A(n) = a(n)a(n-1l)...a(l). If krl < =, let
d,: An - An—l be multiplication by kn. If kn = «, then
_ ® . N . .
An An-l zy , and let qn.An 8.1 be projection to the
first coordinate.
Suppose now kn < » and gn—l(knYn) = to. Then
A(n-1) _ A(n-1)
t0 - gn—l(knYn)
- = a(n-1)A(n-2)
gn-l(ann)
_ A(n-2)
- gn-Z(qn-lann)
9o (@9, a, T

i.e. g(qlqz---ann) = exp(2ﬂ1A(n—l)£0). Since qlqz---qnvne A,

we only need the following lemma, with £ = A(n-l)go,
Y = Ay ta Y and G replacing G/H. :

Lemma 2: Let G be a compact abelian group with dual

I', let v €T, and t; = exp(2mif,) where &; is irrational.
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Then E = {g € G: g(y) = to} is either empty or a coset of a

closed nowhere dense null subgroup of G.

Proof: If vy has finite order, then g(y) 1is a root of
unity, and hence E = @.

Suppose +y has infinite order. The mapping g - g(y) is
then a homomorphism from G onto T, whose kernel K 1is there-
fore a closed nowhere dense null subgroup of G. Clearly E

is a coset of K, completing the proof of the lemma.

(b) Suppose g £ E. A small change in g produces a
small change in §l, hence in §2, etc. If we define

en(g) =g, then en: G/H - G/A; is continuous off E. Since

G 1is the inverse limit of the G/A;, the limit 6 of {en}

is also continuous off E.

Corollary: If a: X - G/H 1is almost continuous, then
there is an almost continuous lifting d&: X - G of a such

that nd = a.

Proof: Let ©6: G/H - G be a cross section to wn con-
tinuous off a meager null set E. Some care is needed, since
a_l(E) could have positive measure in X and then 6a need
not be almost continuous.

For fixed 2z ¢ G/H let sz(y) = 8(y-z) + 6(z). Then
6, is again a cross section to nw, continuous off E + z.
Define the measure a(p) on G/H by al(u)(F) = u(a_lF). By

Fubini's theorem,

J a(p) (E+z)dm(z) = I m(E-z)da(p) (z) = 0,

G/H G/H

so a(u) (E+z) = 0 for m-almost every =z € G/L. For such z,
we have u(a_l(E+z))= 0, and it follows that a_l(E+z) is
also meager since u is positive on open sets. Thus a= 6,0

works, finishing the proof.

For the remainder of this section, say that S finitarily
splits if for each compressible U and almost continuous «a,
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there is an almost continuous solution f of (1). Using the
Corollary to find almost continuous instead of measurable 1lift-
ings of a, the proofs of the following lemmas are easy adap-
tations of those in [4, §5]. Together with the structure of
general group automorphisms given in [4, §7], they are suffi-
cient to show that every ergodic group automorphism finitarily

splits, i.e. to prove Theorem 1.

Lemma 3: Let S be an automorphism of G, and H be
an S-invariant closed subgroup of G. If S finitarily splits,

so does SG/H'

H
does S, a solution in G/H lift to solutions in G.

Lemma 4: If S and SG/H finitarily split, then so

The meaning of the last statement is that if a: X - G

and ﬁl: X - G/H solves (1) for ma, then there is a solution
B: X > G for a such that mp = Bl'

Lemma 5: Suppose S 1is an automorphism of G, and that
Hk‘.O are S-invariant subgroups with H0 = G. If SHk—l/Hk

finitarily splits for k 2 1, then S finitarily splits.

§6. Neumann series solution for hyperbolic automorphisms

Since a finitary solution of (1) for arbitrary base maps
U has eluded us, it is interesting that for a rather general
class of ergodic automorphisms (1) can be finitarily solved for
every U. This method was pointed out to us by W. Parry.

Let G be a compact abelian group with translation in-
variant metric p. Say that an automorphism S of G is
hyperbolic if there are almost continuous functions myt G = G,
ﬂu: G - G with ranges KS and Ku, respectively, and cons-
tants C > 0 and A € (0,1) such that

(i) g = ﬁs(g) + nu(g) for all g € G,
(i1) p(0,s"g) < A" if g €K, n =0,

(iii) p(0,8™g) < cA" if g € Ky, n = 0.
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If S 1is a hyperbolic automorphism of T" in the usual
sense (no eigenvalues of modulus one), then it is hyperbolic
in the above sense. For n, can be obtained by embedding "
into :mn, projecting Rr" along the stable eigenspace of S
to the unstable eigenspace, and projecting back to ™. Ssim-
ilarly for M. Shifts on compact groups (e.g. the n-shift)
are hyperbolic, where the maps mg and n, are to the future
and to the past. Irreducible solenoidal automorphisms with
no eigenvalues of modulus one are hyperbolic (see [3]). How-
ever, toral automorphisms with eigenvalues of modulus one and
automorphisms of the full solenoid R" are not hyperbolic
because they have isometric parts (as one can show).

We remark that hyperbolic group automorphisms are auto-
matically ergodic. This follows because nonergodic automor-
phisms have a nontrivial isometric factor automorphism. By
(ii) and (iii) Ks and Ku would map to the identity, violat-

ing (i).

Theorem 3: If S 1is a hyperbolic group automorphism of
G and U is a map of X (not assumed compressible or even
ergodic), then for each almost continuous function a: X - G
there is an almost continuous solution g to (1).

Proof: Let Ter Moo Ks’ Ku, C, and X be as in the
definition of hyperbolicity for S.

We first claim that if we can solve (1) for a replaced

by a translate a + 9o+ then we can solve it for «a. For
since S 1is ergodic, (I-S)G = G, so there is a g, ¢ G such
that 9, - Sgl = 9p- If B 1is a solution for a + 9y then
B - 9, is a solution for «a. Therefore an averaging argument
as in the proof of the Corollary over translates of a shows
that we may assume that ag, = omg ¢ X - KS and Gy T TSt X a»Ku
are almost continuous.

Now we just write down the solutions. Let

Bs(x) = Sja U_j_lx),

g

e~ 8

j=0



S_]_la (ij).
0 u

W
x
-~
1]
1
lo~18

since a (U7 7h) € k,, (0,870 (077 7h)) < @), 3 = 0. Thus
the series defining Bs converges uniformly where defined, and
since aS(U_J-lx) is almost continuous, so is Bs' Similarly

for Bu. “An easy calculation shows that
a_(x) = BS(UX) - SBX(X), au(X) = Bu(UX) - SBS(X).

Since a(x) = as(x) + au(x), the function B (x) = Bs(x) +Bu(x)
is an almost continuous solution of (1).

The motivation for this solution and justification for
the reference to Neumann series is as follows. Suppose S 1is
a hyperbolic toral automorphism, and lift a to @&: x - R".
Form T projecting R™ to the stable eigenspace E° as
suggested above. On the Hilbert space L2(X,ES) there are
commuting operators (ﬁf)(x) = f (Ux) and (Sf) (x) = S(f(x)).
Then U is an isometry while ISl < 1. We are to solve

(G-s)B, = a_.

Thus

Evaluating at x gives the definition of Bs(x) above. A

similar idea works for B by expanding

(0-sy7t = -—g7t(z-0s717 L,
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where |[0s™7| 2 < 1.

L (x,EY)
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