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ERGODIC AFFINE TRANSFORMATIONS ARE
LOOSELY BERNOULLI

BY
D. A. LIND

ABSTRACT

We prove that an ergodic affine transformation of a compact abelian group is
loosely Bernoulli, that is, it can be induced from a Bernoulli shift.

By replacing Ornstein’s d process metric in the definition of very weak
Bernoulli with another metric related to Kakutani equivalence, Feldman [2]
produced a class of processes he dubbed ‘‘loosely Bernoulli”. An ergodic
transformation is then loosely Bernoulli if all processes arising from it are loosely
Bernoulli. Using Feldman’s metric, Weiss developed in [9] a theory of Kakutani
equivalence parallel to the isomorphism theory of Bernoulli shifts.

Zero entropy loosely Bernoulli transformations are mutually Kakutani equiv-
alent, and include all ergodic translations on infinite compact groups.
Bernoulli shifts are loosely Bernoulli. Hence so are ergodic automorphisms of
compact groups, since they are isomorphic to Bernoulli shifts (see [3], or [5], [6],
and [7]). Here we combine these algebraic examples of loose Bernoullicity.

Let G be a compact abelian group equipped with Haar measure and the Borel
o-algebra. Let S be a continuous, algebraic automorphism of G, and a € G. The
transformation g » Sg + a is an affine transformation of G.

THEOREM 1. Ergodic affine transformations of compact abelian groups are
loosely Bernoulli.

We prove more. Suppose that (X,u) is a Lebesgue space, and that U is a
measure-preserving transformation (hereafter called map) of X. Let « : X - G
be measurable. The map UX,S:XXG—>XXG  defined by
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((Ux,S)(x,g)=(Ux, Sg + a(x)) is the skew product of U with S by the skewing
function a.

THeEOREM 2. Ergodic skew products of zero entropy loosely Bernoulli transfor-
mations with automorphisms-of compact abelian groups are loosely Bernoulli.

The proofs are essentially the same. The ingredients are the following.
Call an automorphism S periodic if S" = I for some n >0.

THeEOREM A. Ergodic skew products of zero entropy loosely Bernoulli maps
with periodic group automorphisms are loosely Bernoulli.

The proof of Theorem A is the same as that given by Weiss [9, theor. 7.3] for
skew products with the identity automorphism, since a periodic automorphism is
an isometry for a suitably chosen translation-invariant metric.

TueoreMm B. [9, cor. 4.8] Loose Bernoullicity persists under inverse limits.

THEOREM C. A skew product of a map with an ergodic group automorphism is
isomorphic to their direct product.

We have shown that the isomorphism in Theorem C preserves the group fibers
[3], and indeed, by solving a related functional equation, that it can be chosen to
be a translation on each group fiber [4].

We will prove Theorem 2. After this we will indicate the proof of Theorem 1.

Proor oF THEOREM 2. The thread that stitches the above results together is
that a general group automorphism is an inverse limit of periodic automorphisms
followed by a skew product with an ergodic group automorphism (see [1, ch. III,
§4] or [3, theor. 9.2]).

Let ' be the dual group of G, and T be the automorphism of I' dual to S.
Define

r={yer:(r-1ny =0}
and inductively
I.={yer:(r--nNyer...}
for n = 2. Each I, is T-invariant, so that {I',} is increasing, say to I'.. Denote the
annihilator of I',, in G by H,, and of I'. by H. Then H, and H are S-invariant

closed subgroups of G with H,\y H.
We claim that T is aperiodic on I' /I, i.e. the only element periodic under T is
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zero. For suppose that (T* — I)y €T,, where we may suppose that k > 1. Then
(T™ -I)y €T, Clu-, so that y €T, CI...

If K is an S-invariant closed subgroup of G, let Sk denote the restriction of S
to K, Sgx the factor automorphism, and 7 :G — G /K the quotient
homomorphism. If U:X—-X and a:X—G, then wna:X—> G/K, and
UX..Scx is a factor of UX,S. Using a Borel cross section to m, it is easy to
show that UX,S is a skew product of UX.,,Ss/x with Sk (for details, see [3, §2]).
Whenever we write UX,,Sgx, the symbol 7 will denote the quotient
G —G/K

Assume that U is zero entropy loosely Bernoulli, and that U X, S is ergodic.
Then the factor U X, Sg/u, is ergodic. Since T is periodic on I';, S is periodic on
the dual G/H,. By Theorem A, UX,,Sg/u, is loosely Bernoulli. It is easily
checked to have zero entropy. Now T is periodic on I';/I'y, so that S is periodic
on the dual (G/H.)/(G/H,)= H,/H,. Since UX,,Ssu, is a skew product of
UXnaScm, Wwith Sy,m,, another application of Theorem A shows that
U X ..Sc/m, is zero entropy loosely Bernoulli. Inductively, UX,.Scmu, is zero
entropy loosely Bernoulli for n = 1.

Since H, \H, UX,,Ss,4 is the inverse limit of the UX,,Sc/n, and is
therefore loosely Bernoulli by Theorem B.

Now T is aperiodic on I'/I", so that Sy is ergodic on the dual H. Hence Sy is
Bernoulli [3]. Since UX,S is a skew product of UX,,Sgu with Sy, it is
isomorphic by Theorem C to the direct product (U X,.Sg/u) X Su. It is easy to
prove that the direct product of a Bernoulli shift with a loosely Bernoulli map is
loosely Bernoulli. Hence UX,S is loosely Bernoulli.

Remarks. 1) To reduce this to affine transformations, replace X by a
one-point space {x}, U by the identity map, and let a(x) = a. Then U X,S is the
affine map g » Sg + a. The proof of Theorem 1 is then the same as that of
Theorem 2, except that some stage in the inverse limit may involve taking a skew
product of a cyclic permutation of a finite set with a periodic group automor-
phism. Such maps are easily checked to be zero entropy loosely Bernoulli.

2) Recently, Dan Rudolph ([8] and oral communication) proved the much
deeper result that ergodic skew products of positive entropy loosely Bernoulli
transformations with the identity automorphism of a compact group are loosely
Bernoulli. His proof easily extends to skew products with periodic automor-
phisms, and allows a proof of Theorem 2 for positive entropy base transforma-
tions. We preferred here to keep to the more elementary zero entropy case,
since that is all we needed for affine transformations.
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