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APPLICATIONS OF ERGODIC THEORY AND SOFIC SYSTEMS

TO CELLULAR AUTOMATA

D.A. LIND

Department of Mathematics, University of Washington, Seattle, Washington 98195, USA

We indicate a mathematical framework for analysing the evolution of cellular automata. Those automata obeying an additive
rule are shown to be the same as endomorphisms of a compact abelian group, and therefore their statistical and dynamical
behavior can be told exactly by using Fourier analysis and ergodic theory. Those obeying certain nonlinear rules are closely
tied to a finitely-described object called a sofic system, but the underlying statistics appear to be more complicated and
interesting. We conclude by formulating several conjectures about one such system.

1. Introduction

Cellular automata were originally introduced by
von Neumann and Ulam [1] as potential idealized
mathematical models of biological systems capable
of self-reproduction. Since then they have been re-
introduced and studied in many contexts, ranging
from parallel processing in computers to the
growth and evolution of crystals and organisms. A
detailed description of cellular automata, together
with many references to their applications, has
been recently given by Wolfram [2].

This paper has two purposes. The first is to show
how certain patterns and regularities observed in
the evolution of cellular automata can be put into
a mathematical framework capable of useful anal-
ysis. Using the basic tools of ergodic theory and
Fourier analysis on compact groups, some of the
empirical observations in [2] can be rigorously
formulated and proved. Other quantitative state-
ments there can be given an exact form.

The second purpose is to point out that some of
the numerical observations lead to precise but
apparently difficult mathematical problems. The
computer simulations of Grassberger [3] on the
behavior of one type of cellular automaton lead to
likely looking conjectures in dynamical systems.
However, even a crude model of the necessary
theorem on random walks eluded Erdos and Ney
[4], only to be settled later by Adelman [5].

Although treating cellular automata as dynam-

ical systems is hardly new (see [6] for example),
there are some novel features here. Additive rules
are the same as endomorphisms of a compact
abelian group, and the latter have been thoroughly
investigated [7]. Virtually complete results are
available for them. Also, the natural stage on
which certain nonlinear cellular automata evolve is
an object introduced by Weiss [8] in 1973 called a
sofic system. Such systems can be described in
terms of a finite-state automaton. Their theory
leads to useful information on the statistics of
nonlinear cellular automaton evolution.

2. Mathematical framework

We will deal with 1-dimensional cellular auto-
mata. Extensions to higher dimensions should be
clear.

Let S be a finite set of states. A configuration on
the lattice Z of integers is an assignment of an
element of S to each site ieZ. Thus a
configuration x = {x,} is a doubly-infinite sequence
of elements x;€S. The set X of all possible
configurations is denoted by SZ. For simplicity, we
take S = {0, 1} unless otherwise stated.

The topological glue holding the points of X
together is determined by the metric

dix,p)="3 27Mx;—y|.
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Thus x and y are close when their components X;
and y; agree for M < N for a large N. The space X
equipped with metric d is a Cantor set.

For x € X, define (ox), = x;,,. Thus o shifts the
entries in a configuration one unit to the left. This
shift is a continuous and one-to-one mapping of X’
onto itself, i.e. ¢ is a homeomorphism of X.

A cellular automaton rule gives the discrete time
evolution of a configuration in terms of a local
interaction of the site values. In other words, a
configuration x evolves in one time step to a new
configuration tx defined as follows. Fix a neigh-
borhood size k and a function 7,: $**'—>S. Then
define
(tx) = To(Xi ks + o Xi i) - (2.1)
One example of such a rule, using nearest neigh-
bors only, is the additive rule

(tx);=x;_;+ X, (mod2). (2.2)

We shall study this rule in section 4.

It is clear that if x is close to y, then tx will be
close to ty. This means that 7:X—X is a con-
tinuous map. Also, spacial homogeneity of T means
that © commutes with o, i.e. 6T = 10.

Conversely, using uniform continuity it is easy
to show that if t:X—X is a continuous map
commuting with g, then T must be given by a local
rule of the form (2.1) [9]. Therefore cellular auto-
mata rules coincide with shift-commuting con-
tinuous maps of X.

Such continuous mappings have been studied
before [9]. However, there is such a wealth of
phenomena that simple or comprehensive results
are rare.

3. Ergodic theory, entropy, and disorder

Before studying two cellular automata in detail,
we make some general remarks.
The appropriate mathematical description of an

initial distribution of configurations is a proba-
bility measure u on X. We should also require u to
be spacially homogeneous, so u(cE) = u(E) for all
measurable subsets E of X.

To  describe such a
B=[bb,...b,_\], beS, k=1, and put
CB)={xeX:xy=by,....,x,_,=b,_,}. Thus
C(B) specifies the set of configurations with pre-
scribed values at a finite number of sites. Such a set
is called a cylinder set. Clearly u must satisfy the
consistency relation

measure, let

w(Clbg, - ... b = Z p(Clby, - .

jes

b j ) G.1)

The Kolmogorov consistency theorem [10] shows
that any assignment of measures to cylinders satis-
fying (3.1) will extend to a shift invariant measure
on X.

For example, let O<p < 1. If B has j I’s
and k —j 0's, define p,(C(B)) =p’(1 —p)*~/. This
distribution u, specifies a random initial set of
configurations with density p of 1’s.

Since p is assumed preserved under o, we can
apply the tools of ergodic theory. Say that pu is
ergodic for o if whenever oE = E, then u(E) =0 or
1. For example, each p, is ergodic for o.

If p is ergodic for g, the ergodic theorem implies
that for every continuous function f: X - R,

1

mi=z_Nf(0'ix)—>jf(x) du(x), as N-»owo,

for p-almost every x in X. As an example, to
compute the frequency of 1’s in x, let fi(x) = x,.
Then the ergodic theorem implies that for u-almost
every x, the frequency of 1’s in x exists and equals

N
lim S ¥ Ao = ffl(x)du(x).
X

Applying this to p, shows that p,-almost every
point in X has frequency p of 1’s. This restates the
strong law of large numbers for Bernoulli trials.

Since 7 is continuous, its image tX in X is
compact. A g-invariant measure y is mapped to a
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measure Tt on X via the definition
(tu)E)=p(t"'E). Since ogt=10, TN i8S
o-invariant as well, and ergodic for ¢ if u was. The
frequency of 1's in the first evolution tx of a typical
point x is

N
lim ——— Tx).
lim N1, 2, )
Since fi(o'tx) = (fit)(c'x), the ergodic theorem
implies this limit equals

J(/‘.r) dp = ffl d(tu), (3.2)

for almost every x.

Similar results hold for further iterates t”. In
fact, all statistical quantities, such as the frequency
in 7"x of the block [0110100], can be exactly
computed once the image measure t"u is known.

Limiting behavior of the evolution as n — o0 can
also be formulated mathematically. Say that a
sequence of measures y, converges to pu (symbol-
ically u,—p) if for every continuous real-valued
function f on X, [fdu,—{fdu. In probability
theory this is called “weak convergence.” The
limiting behavior of a cellular automaton with
given initial distribution p of configurations is the
study of the behavior of the measures 7"y on "X
as n—o0. For example, we shall prove below that
if 7 is the additive rule (2.2) and 0 <p < 1, then
N~"Z)Z) 1"u,— py . This implies that regardless of
the density of 1I’'s in an initial random
configuration, the limiting frequency of 1’s is 1.
One consequence is a proof of the approximate
result (3.7) of [2] concerning the density of triangles
for additive rules (see (4.1) below).

Entropy measures disorder. In the context of
Cantor sets, topological entropy of the shift ¢ on
a o -invariant compact subset Y of X can be defined
as follows. Let f:Y—{l,...,k} be continuous,
and define N,(f, o) to be the number of distinct
sequences {f(¥),f(oy),....f(6""'y)} for yeY.
Clearly N,(f, o) <k". Define H(f, ¢) = lim sup,,_,,
(1/n)log N,(f, o), where log is the natural loga-
rithm. Finally, define the entropy of ¢ on Y to be

h(a, Y)=sup,H(f, 0), where the supremum is
taken over all continuous functions ftaking a finite
number of values. Thus /4 (o, Y) is the exponential
rate of growth of the number of approximate
orbits in ¥ of a given length.

Since X < X, the images t"X are o-invariant
compact sets that decrease to a compact set
X =N ,1"X. Thus h(o,t"X) decreases, and
the difference h(g, X) — h(o, t"X) measures the
“increase in order” introduced by the cellular
automaton rule. This is a mathematical description
of the “self-organization” observed in [2].

One quantitative consequence of these obser-
vations is the following. Let P,(t) denote the
number of blocks of length n with predecessors
under 7. If 7X = X, then clearly P,(t) = 2" for all
n. However, if X # X, one can show [11] that
h(o,tX) < h(o, X) =log 2. This means in particu-
lar that P,(t) increases like exp[nh(o, tX)], so
P,(1)/2"—>0 exponentially fast.

4. Exact results for additive cellular automata

Let 7 denote the additive rule (2.2). Using the
ergodic theorem for commuting transformations
together with Fourier analysis, we show that the
statistical regularities observed in [2] can be proved
in an exact form. Indeed, all statistical quantities
can be explicitly computed this way.

Since each coordinate of X is an element of the
finite group Z,={0,1}, X itself is a compact
group. Additivity of 7 means that 7 is a group
homomorphism. Furthermore, t is a four-to-one
homomorphism of X onto itself. Therefore [12] it
preserves Haar measure py = p,,. Throughout this
section, ‘“‘almost everywhere” refers to py unless
otherwise indicated.

The character group G of X is the countable
abelian group whose elements have the form
g = {g.}, g€ Z, with all but a finite number of g,
equal to 0. The value of a character g on a group
element x is computed by

o0

gx)= ] (I1—2x),

i=—o00
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where there are only a finite number of terms in the
product different from 1. The dual homomorphism
of G induced by 1, which we also call 1, is given by

(1)=& -1+ &+

Forg # 0, {t"g} is infinite. implying 7 is ergodic for
iy [12]. Thus ¢ and t induces a jointly ergodic
action of Z x N, given by the correspondence
(i.n) <> o't". Under this correspondence, an initial
configuration x € X generates a pattern fi(g'z"x) of
0’s and I’s indexed by Z x N.

Let E be a finite subset of Z x N, and P : E—~7Z,
assign a pattern of 0’s and 1’s to E. Put fi(x) = 1
if f\(c't"x) = P(i,n) for all (i, n) € E, and 0 other-
wise.

Define the frequency of the pattern P in the
t-evolution of x to be

N N
vp(x) = }/ﬂmizz_mzofp(a t'x),
provided the limit exists. An application of the
ergodic theory for commuting measure-preserving
transformation [13, VIIL. 6.9] implies that v,(x)
exists for almost every x and can be computed
from f,.

Theorem 1. For almost every x € X the frequency
vp(x) of the pattern P in the t-evolution of x exists
and has the value

vp(x) = pr duy .

X

Thus the statistical patterns in the evolution of
a configuration can be exactly computed. In partic-
ular, let Q(k) denote the frequency of the block
[10¥1] in the evolution of x. By Theorem I,
Q(k)=(;)27% a result observed in approximate
form in [2].

As another application of theorem 1, let P
denote the pattern of a triangle of 0’s with base
length k. Then P is described as the occurrence of

[10¥1] in 7x together with at least one 1 occurring
in x above a 0. If £, is the corresponding function,
it is easy to compute that the density T(k) of
triangles of base k has the value

3
T(k)=vy(x)= ffp dpy = (1_6>2_k > (4.1)

again observed in approximate form in [2].

The evolution of an initial distribution p of
configurations is given by the sequence of measures
t'u. In particular, the study of 7"y, reflects the
evolution from a disordered state with density p of
I’s. We show that although 1"y, does not itself
converge if p # 3, the averages converge to uy.

We shall use the machinery of Fourier analysis
of the compact group X. The Fourier transform of
a measure u on X is given by

ag) = Jg(fv) du(x) (ge€Gq).

X

[t is easy to show that u,—pu exactly when
a,(g)—i(g) for every g€eq. Since
(t"u)" (g)=A(z"g), we have that

T, if and only if fi(r"g)— A, (8)
forall geG. (4.2)

Thus the behavior of t"u depends on the behavior
of fi, which can be computed in particular cases.
We give two examples.

Theorem 2. (i) If p # 3, then ©"u, does not converge.
(i) For 0<p <1,

1

N T'U, >y, as N—ooo.
n

1

I M=z

Proof. We first calculate fi,. For g = {g,} € G, let
S(g)={izg;=1} be the support of g, and put
r(g) =|S(g)|, where |E| denotes the cardinality of
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a set E. Then

a(g) = f g(x)dp,(x)

= Z ( n (1— 2bi)>l‘p{X: Xi= bi}
bi=0.1 \ieS(g)
i€S(g)
& r(g)
- T e -
= L l)< k )”k(] Pyt
=(1—2p)y®. 4.3)

Let g(i) be the element of G with a 1 in the ith
coordinate and 0’s elsewhere. Then 12"g(i)=
gi—2+g(i+2), so r(t2"g(0))=2 and
r(z¥"*2g(0)) = 4 for every n. Thus by (4.3)

f,(t7g(0)) = (1 —2p)*,

while

A7 g (0) = (1 - 2p)*.

This shows that if p # 3, then /i,(t"g(0)) does not
converge as n—oo. Using (4.2) we obtain (i).

To show (ii), we begin with the following fact,
which can be easily deduced from properties of the
binomial coefficients modulo 2. For g #0 and
every M >0,

lN]{n:r(r"g)s M}|-0, as N-ooc.

Then for g #0 and M > 0, using (4.3) we have

r(t"g)

1 X |
’}O"Z%IHKT g)lsg}vn§;|] _-2p
1
<y [{n:r(z"g) < M} + |1 —2p|™.
This implies that

M l N ~ n
lim sup N"; fi(t g)i <|[1—2p™,

for all M > 0, and hence that

l N
N Zl A,(t'g)=0 = fu(g) (g #0).

Since £i,(0) = fiy(0) = 1, another application of
(4.2) establishes (ii).

The next result shows that if the Haar initial
distribution is distorted by a continuous function,
the distorted distribution will evolve under 1 to the
Haar distribution.

Theorem 3. If fis a continuous real-valued func-
tion on X with Haar integral 1 and du =fdpuy,
then t"u—1t"uy,.

Proof. We first compute fi. Let g # 0, and let S(g)
have the same meaning as in the proof of theorem
2. Put u(g)=max{|i|:i e S(g)}. Let jeS(g) be
such that |j|=u(g). Define y:X-X by
(Yx);=x;+ d; so Y switches 0 and 1 in the jth
coordinate. Clearly,  preserves u,. Put
E ={xeX: x;=0}, so E and Y E are disjoint with
union X. Then

fig) = J g(x)f(x) dun(x)

EUYE

= f{g(x)f(x) +gWx)f (Yx)} du(x) .

E

Since je S(g), it follows that g(yx)= —g(x).
Therefore

)| < f /() = £ dpn()

Now d(x,yx)=2""®  so if we define
var(f,8) =sup{|f(x) —f(»)]: d(x.y)<d}, we
have

A(g)| < var(f, 2749).
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Note that since f is continuous, var(f, d)—0 as
6-0. Now for g #0, u(t"g) =u(g)+n, so

|AG"g)| Svar(f. 279770 = jiy(g), as n—co.

Since [/ duy =1, i(t"0) =1 = jiy(0), and an ap-
peal to (4.2) completes the proof.

We point out that theorem 3 generalizes to an
arbitrary ergodic automorphism t of a compact
abelian group X as follows. Let f be a continuous
real-valued function on X, and u;; be Haar measure
on X. Put du =fduy. Then t"u—pu(X)uy. The
proof uses ergodicity of 7 to show that for any
nonzero character g on X, t"g ultimately escapes a
given finite set of characters, together with a
version of the Riemann-Lebesgue lemma for X.

Finally, consider cellular automata whose state
space S is a finite group. Additive rules such as
(2.2) are clearly endomorphisms of the compact
group S%= X, and the dynamical and statistical
structure of their evolution can be completely
analysed using the tools indicated here.

5. A nonlinear example

In this section we will discuss the map 7: X > X
defined by (tx), =1 if [x;_,x;x;,,] = [100] or [001],
and (tx), = 0 otherwise. This is Rule 18 of [2] and
[3]. We show that the natural space on which 7 acts
is X, and that the restriction of ¢ to tX is a
finitely-described object called a sofic system. Us-
ing the theory of sofic systems, we prove that the
restriction of ¢ to tX has entropy log 1.7549. We
then formulate some specific conjectures about the
evolution of this cellular automata suggested in
part by the numerical work of Grassberger [3].

There are two ways to give a finite description
of certain ¢-invariant compact subsets Y of X. The
first is to specify a finite list of forbidden blocks
{B\,....B}, and define Y to be the set of
configurations in which no block B; appears. For
example, if [11] is the only forbidden block, then Y
consists of all sequences in X with isolated 1’s.

Such a Y is called a subshift of finite type or a
topological Markov shift [14]. It is effectively de-
scribed by a 0-1 matrix of allowed transitions,
from which the entropy and dynamical behavior
can be easily derived.

A more general kind of finite description is one
which characterizes allowed sequences as those
that can be checked by a finite-state automaton.
An example is the set of configurations with an
even number of 0’s between consecutive occur-
rences of 1’s. No finite list of forbidden blocks can
specify this set, so this is not a topological Markov
shift. Weiss [8] introduced such systems in 1973
and called them “‘sofic” from the Hebrew word for
“finite.”” He showed that sofic systems are exactly
those obtained by taking continuous images of
topological Markov shifts. Later Coven and Paul
[15] showed every sofic system is a finite-to-one
continuous image of a topological Markov shift,
and so properties of the sofic system are closely
paralleled by such a Markov cover.

Theorem 4. For the nonlinear rule t defined above,
let Y =tX. The restriction g, of ¢ to Y is a sofic
system of entropy log A, where A ~ 1.7549 is the
largest root of 4> — 242+ 1 — 1.

Proof. It is clear from the form of t that [111] does
not occur in X, Let M = [0110]. We claim that X
is the set of configurations such that between
consecutive occurrences of the “marker” M there
are an even number of isolated 1’s.

Let x be an allowed configuration. First observe
that M can only come from M =[1001] under .
Thus occurrences of M in x determine occurrences
of M in any X with t¥ =x. A simple parity
argument shows that if x etX, the number of
isolated 1’s between markers must be even. Thus it
suffices to show that any block of the form
B =[M0"10™1 ...10"M], where r is odd, is the
image of a block of the allowed type. Let
B =[MB,B, ... B,M], where we construct the B; as
follows. Each
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By = [107+21].

Each B, ,, has length n,,, — 1, and can be filled
in according to the parity of n,, ,, to yield a B of
the allowed type with 18 = B. This shows that t.X
has the required form.

M. Boyle has constructed a finite-to-one Mar-
kov cover for o, as follows. The idea is to use
blocks in Y of length 3 for states, with 3-blocks not
in a marker having two ‘“flavors,” odd or even
according to whether there have been an odd or an
even number of isolated 1’s since the last occur-
rence of the marker M. Then M can be entered
again only from the even-flavored blocks.

Specifically, let S = {[110], [000],, [001],, [010],
[011]., [100], [101]., [00O], [0O1)}, [1O1], [100],,
[010],}. Here [110] represents the marker M, and
subscripts “e” and “0” represent parity. Let

[0 0 0001 00000 17
01 00O0O0OO0OO0OT1O0O0OTO0
0001 000O0O0O0OQO
000 0O0T1TO0OO0OO0O0OO0O!1
1 00 0 0 0O0OO0OOOO

c=0 10000001 0 00
0001 0O0O0OOOOTUO0O
00100O0O0OT1UO0UO0TO0TOQO0
00001 O0O0O0OO0OT1O0GO
000O0O0OO0OT1TO0OO0OO0OTIOQO

i-O 010 00O0OT1O0O0O0OO0
00001 00O0OO0OT O 1]

Thus C reflects allowed transitions, with the parity
subscript changed if a new 1 is added. Define

ZTc={weS:C,,

v, =1, foralli},

and (o-w);=w,,,. For [abc] in S, subscripted or
not, put my([abc]) = b. Then =, yields a continuous
covering n: X~-— Y such that no. = o,n. It happens
that 7 is one-to-one on the subset of X of those
w with some occurrence of the marker [110]. This
means that n is one-to-one over the set in Y of

points containing a marker. Marker-free
configurations are characterized as those with just
isolated 1’s, and this forms the topological Markov
shift Z of those sequences with [11] forbidden.
Over Z, © is at most two-to-one.

The entropy of o is the logarithm of the spectral
radius of C [14]. Since the characteristic poly-
nomial of Cis A%(13 =242+ 4 — 1), h(oc) = log 4,
where 4 ~ 1.7549 is the largest root. Entropy is
preserved under m, so h(oy) =log i as well. It is
interesting to note that on the set Z over which n
is not oneto-one, h(a,)=log(l +./5/2) =
log 1.6180.

Let B,(Y) denote the number of allowed blocks
in Y of length n. Since the Markov cover n: X— Y
is at most two-to-one, f3,(Y) is within two absolute
constants times f,(X.). Now S,(X.) is the sum of
the entries in C”, and therefore is within two
absolute constants times A", where A is as in
theorem 4. We therefore draw the following con-
clusion:

Corollary. There are positive absolute constants ¢,
and ¢, such that ¢ A"<B(Y)<cA", where
A~ 1.7549 is the largest root of 1> — 242+ 1 — 1.

Although the sofic system Y is the natural stage
on which 7 acts, numerical work indicates that a
thin subset of Y is statistically much more
significant.

Let A,={xeX:x, =0 for all i}, 4, ={xeX:
Xy41 =0 for all i}, and 4 = A4,UA,. Clearly,
AcY. Also, 1: A,—>A,, t: A, A, and the re-
striction of 7 to A is the additive rule of section 4.
Thus 7 evolves on A according to a rule known in
considerable detail. A very stimulating observation
of Grassberger [3] is that under the evolution of 7
on Y, typical points are attracted to 4 most of the
time.

To make this precise, for y € Y define a “‘kink”
in y to occur between sites i and i + 1 if there is an
n for which

Vicw  YiYier o Vignsdl = [10°"1].
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Then configurations in Y can be decomposed into
alternating regions of parity consistent with 4, or
with 4,, separated by kinks. Grassberger observed
that under 7, kinks are never created, but that
neighboring kinks can move together and annihi-
late each other. Thus t”y tends to have increasing
domains of pure type A, or 4,, separated by kinks
which decrease in density as n —oo. If kinks move
according to a random walk, the kink density of
7"y should be about ¢ /\/;1. However, recurrence of
random walks means that at a fixed site, a kink
would move through 0 infinitely often. Grass-
berger’s numerical work on this problem gives
good evidence that the random walk model is
accurate, even producing the value of the
“diffusion constant” c. These observations can be
formulated as follows.

On A; put the measure o, which independently
assigns probability 1 to seeing a 0 or 1 at sites
2j +i—1 for all j. Then 1 preserves the average
o = (o) + a,)/2 on A, and this system is essentially
that of section 4. Some additional numerical work
has indicated that reasonable measures on Y
evolve towards « under . However, 4 is not an
attractor for t in the usual sense, since kinks
apparently recur infinitely often. This would mean
that t"y typically moves away from A infinitely
often, but so rarely that statistical features are not
disturbed.

The mechanism for kink movement, annihi-
lation, and the resulting diffusion of kinks appears
to be mathematically complicated. A very simple
model problem of this behavior was proposed a
decade ago by Erdos and Ney [4]. Suppose there is
a particle at each site in Z, and these particles
undergo independent simple random walks, with
annihilation if particles cross paths or land in the
same site. Erdos and Ney conjectured, but could
not prove, that the probability that the origin is
visited equals 1. This problem was solved later by
Adelman [5]. Kinks in ¥ move much more irregu-
larly, so the exact mathematical description of kink
movement and annihilation represents a chal-
lenging problem.

Based on computational evidence, the following

conjectures seem quite likely to be true. To state
the first, let dist(x, 4) = inf{d(x, y):y € A}.

Conjecture 1. For py-almost every x € X,

lim sup dist(z"x, 4) >0,

n—aoo
while for every ¢ > 0,

% [{n: 1<n <N, dist(z"x, 4) > e}| 0.

Conjecture 2. t"uy—a.

Conjecture 3. For py-almost every x € X, the den-
sity of kinks in t”x exists and equals (8nDn)~'?,
where the diffusion coefficient D has the approxi-
mate value 3.

We remark that were conjecture 2 true, one
could deduce from the ergodic theorem that the
density T'(k) of triangles of 0’s with base k should
behave as T(k) ~ (ﬁ)"‘. This is about the same
as the rate (4/3)~* observed experimentally in [2].
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