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Outline of talk
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2. A little information theory

(a) Noisy signal transmission
(b) Covariance and Fisher information
(c) The Cramer–Rao inequality

3. Geometry

(a) Brunn-Minkowski theory and its variants
(b) The Cramer—Rao inequality for convex bodies

4. Isoperimetric and Sobolev inequalities

(a) Euclidean invariants and inequalities
(b) Affine and linear invariants and inequalities

5. Open problems
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Current research (with Erwin Lutwak and Gaoyong Zhang)

Let X be a finite dimensional real vector space and dx ∈ ΛnX∗\{0}. We study
sharp inequalities satisfied by linear and affine invariants of the following.

• (Geometry) Convex bodies K ⊂ X.

• (Analysis) Functions f : X → R.

• (Information theory) Probability distributions f(x) dx on X.

A big question for others or the future: To what extent can the invariants and
inequalities be extended to nonlinear spaces?
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Connections between geometry, analysis, and information
theory

• (Elliot Lieb) The Shannon entropy power inequality (information theory) and
the Brunn–Minkowski inequality (geometry) both follow from the sharp Young
inequality (analysis) proved by Beckner and Brascamp–Lieb.

• (Bill Beckner) The logarithmic Sobolev inequality of Gross is equivalent to an
inequality due to Stam and Weissler involving the entropy and Fisher information
of a probability distribution. Stam used this inequality to prove the Shannon
entropy power inequality.

• (Szarek–Voiculescu) The Shannon entropy power inequality (information theory)
follows from a restricted Brunn–Minkowski inequality (geometry).

There is an excellent survey article titled The Brunn–Minkowski inequality by Richard
Gardner to appear in the Bulletin of the AMS.

Deane Yang, Polytechnic University 11 May 2002, Seattle



Noisy transmission of a signal

• Transmitted signal: x0 ∈ X, where X is an n–dimensional real vector space.
• Received signal: a random vector x ∈ X with respect to a probability distribution

p(x− x0) dx,

where the distribution p(x) dx has mean 0.
• Single component of received signal:

`(x) = 〈ξ, x〉

where ξ ∈ X∗.
• Mean square error:∫

X

〈ξ, x− x0〉2p(x− x0) dx = C(ξ, ξ).

• Covariance matrix:

C =
∫

X

(x⊗ x)p(x) dx.
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Mean estimation

• Repeated transmission of the same signal: Random vectors x1, . . . , xN ∈ X.
• Mean estimate: The random vector

x =
x1 + · · ·+ xN

N
.

with distribution PN .
• The central limit theorem: As N →∞,

PN → G

(
x0,

C√
N

)
,

where G is the standard normal distribution.
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Maximum likelihood estimation

• Repeated transmission of the same signal: Random vectors x1, . . . , xN ∈ X.

• Maximum likelihood estimate: The random vector xm that maximizes the log
likelihood function,

φ(x) =
N∑

i=1

log p(xi − x).

with distribution QN .

• Fisher information matrix:

F =
∫

Rn
(d(log p(x))⊗ d(log p(x)))p dx.

• According to Fisher and Doob: As N →∞,

QN → G

(
x0,

F−1

√
N

)
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The Cramer–Rao inequality

Theorem.
C ≥ F−1

with equality if and only if the distribution p is Gaussian.

In other words, the mean square error of the mean estimate is greater than or equal
to the mean square error of the maximum likelihood estimate, with equality holding
if and only if the distribution is Gaussian.
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A geometric description of Cramer–Rao

• Covariance ellipsoid

EC = {x ∈ X : C−1(x, x) ≤ 1}.

• Fisher information ellipsoid

EF = {x ∈ X : F (x, x) ≤ 1}.

• Cramer–Rao inequality:
EF ⊂ EC,

with equality if and only if p is Gaussian.
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Convex bodies

• A convex body is a compact convex set K ⊂ X that contains the origin in its
interior.

• A convex body K ⊂ X is determined by its support function hK : X∗ → R,
where

hK(ξ) = sup{〈ξ, x〉 : x ∈ K}.

• It is also determined by its dual support function h∗K : X → R, where

h∗K(x) = inf{λ : x/λ ∈ K}.
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Classical Brunn–Minkowski theory

• Volume. Fix a volume form dx on the vector space X. Let

V (K) =
∫

K

dx.

• Minkowski addition:

K + L = {x + y : x ∈ K, y ∈ L}.

An equivalent form is
hK+L = hK + hL.

• Brunn–Minkowski inequality

V (K + L)
1
n ≥ V (K)

1
n + V (L)

1
n,

with equality holding if and only if K and L are equal up to translation and
dilation.
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• Minkowski inequality The mixed volume of K and L is defined to be

V (K, L) = lim
t→0+

V (K + tL)− V (K)
t

.

Differentiating the Brunn–Minkowski inequality yields the Minkowski inequality,

V (K, L) ≥ V (K)1−
1
nV (L)

1
n,

with equality holding if and only if K and L are equal up to translation and
dilation.

Remark. Setting L equal to the unit Euclidean ball yields the classical Euclidean
isoperimetric inequality.
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L2 Brunn–Minkowski theory

• L2 Minkowski–Firey addition:

(hK+2L)2 = (hK)2 + (hL)2

• L2 mixed volume:

V2(K, L) = lim
t→0+

V (K +2

√
tL)− V (K)
t

.

• L2 dual Minkowski addition:

K +−2 L = (K∗ +2 L∗)∗.

• L2 dual mixed volume:

V−2(K, L) = lim
t→0+

V (K +−2 t−1/2L)− V (K)
t

.
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Covariance and Legendre ellipsoids

• Covariance ellipsoid of a probability distribution p(x) dx:

hC(ξ)2 =
∫

X

〈ξ, x− x〉2p(x− x) dx.

• The Legendre ellipsoid Γ2K of a convex body K:

hΓ2K(ξ)2 =
n + 2
V (K)

∫
K

〈ξ, x〉2 dx.

The ellipsoid Γ2K is the unique ellipsoid such that

V (Γ2K) = sup{V (E) : V−2(K, E) = V (K)}.
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Fisher information ellipsoids

• Fisher information ellipsoid of a probability distribution:

h∗F (v)2 =
∫

X

〈d(log p(x)), v〉2p(x) dx,

• A new ellipsoid (Lutwak–Yang–Zhang):

h∗Γ−2K(v)2 =
n

V (K)

∫
K

〈dhK(x), v〉2dx.

The ellipsoid Γ−2K is the unique ellipsoid such that

V (Γ−2K) = sup{E : V2(K, E) = V (K)}.
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Inequalities for the covariance ellipsoids

Theorem. Any probability distribution f(x) dx on X satisfies

h[f ] ≤ log[(2πe)
n
2

√
det C],

where C is the covariance matrix. Equality holds if and only if f is a Gaussian
distribution.

Theorem. [classical]
V (K) ≤ V (Γ2K),

with equality if and only if K is an ellipsoid centered at the origin.
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Inequalities for the Fisher information ellipsoids

Theorem. Any probability distribution f(x) dx on X satisfies

h[f ] ≥ log[(2πe)
n
2 detF−1],

where F is the Fisher information matrix.

Theorem. [Lutwak–Yang–Zhang]

V (K) ≥ V (Γ−2K),

with equality if and only if K is an ellipsoid centered at the origin.

Remark. The information theoretic inequality is a logarithmic Sobolev inequality
first proved by Stam (n = 1) and Weissler (n ≥ 1). Beckner–Pearson showed that
it is equivalent to the logarithmic Sobolev inequality proved by Gross.
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Consequences

Theorem. [Milman–Pajor] If K ⊂ Rn is an origin–symmetric convex body, then

√
n + 2
2
√

3
V (K)

hΓ2K(ξ)
≤ V (K ∩ ξ⊥) ≤ n√

2(n + 2)
V (K)

hΓ2K(ξ)
,

for all ξ ∈ X∗.

Theorem. [Lutwak–Yang–Zhang] If K ⊂ Rn is an origin–symmetric convex
body, then

1
2
V (K)h∗Γ−2K(v) ≤ V (πv(K)) ≤

√
n

2
V (K)h∗Γ−2K(v),

for all v ∈ X.

Equality conditions: Equality holds on the lefthand side only if K is a right cylinder
and u is orthogonal to its base. Equality holds on the righthand side only if K is a
double right cone and u points along its axis.

Deane Yang, Polytechnic University 11 May 2002, Seattle



A rough dictionary between information theory and L2

Brunn–Minkowski theory

Information theory L2 BMt
entropy power V (K)

covariance Γ2K
Fisher information Γ−2K
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The Cramer–Rao inequality

Theorem. [Cramer, Rao] The covariance and Fisher information of a probability
distribution p(x) dx on X satisfies

F−1 ≤ C,

with equality if and only if the distribution is Gaussian.

Theorem. [Lutwak–Yang–Zhang] Any convex body K ⊂ X satisfies

Γ−2K ⊂ Γ2K,

with equality holding if and only if K is an ellipsoid centered at the origin.

The Cramer–Rao inequality is a real form of the uncertainty principle.
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The Euclidean isoperimetric inequality

Fix an inner product on the vector space X, and let dx ∈ ΛnX∗ be the naturally
induced volume measure.

Given any compact set K ⊂ X, let ∂K denote its boundary and Vn−1(∂K) the
(n− 1)–dimensional Hausdorff measure of ∂K.

Theorem. Given any Euclidean ball B and compact set K ⊂ X,

Vn−1(∂K)

V (K)
n−1

n

≥ Vn−1(∂B)

V (B)
n−1

n

,

with equality holding if and only if K is a Euclidean ball.

Easiest proof uses the Brunn–Minkowski inequality.
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The sharp Lp Euclidean Sobolev inequality
Given 1 ≤ p < n, let

φ(t) =

{
(1 + t

p
p−1)

n
p−1 , if p > 1

H(1− t) , if p = 1,

where H is the Heaviside function.

Theorem. [Aubin, Talenti] Given 1 ≤ p < n, there exists a constant c(n, p) such
that any function f : X → R satisfies

‖df‖p ≥ c(n, p)‖f‖s(n,p),

where s(n, p) = np/(n− p), and equality holds if and only if

f(x) = aφ(b|x− x0|),

for some a ∈ R, b ∈ (0,∞), and x0 ∈ X.
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Proof of the sharp Lp Euclidean Sobolev inequality

• Use the coarea formula and the Euclidean isoperimetric inequality to prove the
following fundamental rearrangement inequality,

‖df‖p ≥ ‖df̂‖p,

with equality holding if and only if f = ±f̂(x− x0) for some x0 ∈ X, where f̂ is
the rearrangement of f .

• It therefore suffices to prove the inequality for rotationally symmetric functions.
This is a surprisingly difficult 1–dimensional problem in the calculus of variations.

• The Euclidean isoperimetric inequality and the sharp L1 Euclidean Sobolev
inequality are equivalent.
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The polar projection body

Given a body K ⊂ X and a nonzero vector v ∈ X, the (n− 1)–dimensional volume
of the projection of K in the direction v is given by the function

π1(v) =
c(n)

V (K)

∫
∂K

|vcdx|.

Since π1 is a convex function of v, it defines a convex body

Π∗1K = {x : π1(x) ≤ 1}.

We call Π∗1K the polar projection body. The constant c(n) is chosen so that
Π∗1E = E, for any ellipsoid E centered at the origin.

The volume of Π∗1K can be viewed as the average (n− 1)–volume of all projections
of K.
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Reformulation

• Given a convex body K ⊂ X, there is a measurable map ` : ∂K → ∂K∗, such
that

〈`(x), x〉 = 1,

for almost every x ∈ ∂K.

• It has a unique extension to a measurable map ` : X → X∗ homogeneous of
degree 1.

• The map ` is called the Legendre transform.

• If K is convex, the coarea formula shows that

π1(v) =
c(n)

V (K)

∫
K

|〈`(x), x〉| dx.
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The Lp polar projection body

Lutwak observed that the definition of the polar projection body can be generalized
as follows.

Definition. Given 1 ≤ p < ∞, a convex body K ⊂ X, let

πp(v) =
c(n, p)
V (K)

∫
K

|〈`(x), x〉|p dx.

The Lp polar projection body is the convex body given by

Π∗pK = {x : πp(x) ≤ 1},

where the constant c(n, p) is chosen so that Π∗pE = E, for any ellipsoid centered at
the origin.
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Remark. The Lp polar projection body of a convex body K is always an Lp zonoid
and can be viewed as a natural smoothing of K, since

lim
p→∞

Π∗pK = K.
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The sharp Lp Petty projection inequality

Theorem. [Petty (p = 1), Lutwak–Yang–Zhang (p > 1)] Given 1 ≤ p < ∞,
any ellipsoid E ⊂ X centered at the origin and convex body K ⊂ X,

V (Π∗pK) ≤ V (K)

with equality holding if and only if K is an ellipsoid centered at the origin.

Remark. The L1 ineqality is affine. The Euclidean isoperimetric inequality follows
from the L1 Petty projection inequality and the Hölder inequality.
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The sharp Lp affine Sobolev inequality

Theorem. [Zhang (p = 1), Lutwak–Yang–Zhang (1 < p < n)] Given 1 ≤ p <
n and a function f : X → R,

V (Π∗pf)−
1
n ≥ c(n, p)‖f‖s(n,p).

Equality holds if and only if

f(x) = aφ(
√
〈x− x0, A(x− x0)〉),

for some a ∈ R and positive definite A ∈ S2X∗.

Remark. The proof of the Lp inequality requires both the L1 and the Lp Petty
projection inequalities. The sharp Lp Euclidean Sobolev inequality follows from the
sharp Lp affine Sobolev inequality and the Hölder inequality.
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Open problem: The reverse Blaschke–Santalo inequality

We will say that a body K ⊂ X is centered at the origin, if its center of mass is at
the origin. The polar body K∗ of K is given by

K∗ = {ξ : 〈ξ, x〉 ≤ 1, x ∈ K}.

Theorem. [Blaschke–Santalo inequality] Given any ellipsoid E ⊂ X centered
at the origin and convex body K ⊂ X,

V (K)V (K∗) ≤ V (E)V (E∗),

with equality holding if and only if K is an ellipsoid centered at the origin.

Conjecture. Given any simplex ∆ ⊂ X centered at the origin and convex body
K ⊂ X centered at the origin,

V (K)V (K∗) ≥ V (∆)V (∆∗),

with equality holding if and only if K is a simplex centered at the origin.
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The Lp Petty conjecture: Geometric formulation

Conjecture. Given 1 ≤ p < n, an ellipsoid E ⊂ X, and a convex body K ⊂ X,
the Lp projection body ΠpK of K satisfies

V (ΠpK)V (K) ≥ V (E)V (E∗)

If p > 1, equality holds only if K is an ellipsoid centered at the origin. If p = 1,
equality holds only if K is an ellipsoid.
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The Lp Petty conjecture: Analytic formulation

Conjecture. Given 1 ≤ p < n, Given functions f : X → R and g : X∗ → R,

[∫
X×X∗

|〈df(x), dg(ξ)〉|p dx dξ

]1
p

≥ c(n, p)‖f‖s‖g‖s. (1)

Equality holds in (1) if and only if

f(x) = aφ(
√
〈x− x0, A(x− x0)〉)

g(ξ) = αφ(
√
〈ξ − ξ0, A−1(ξ − ξ0)〉),

for some a, α ∈ R, x0 ∈ X, ξ0 ∈ X∗, and positive definite A ∈ S2X∗.

Remark. The conjecture is known for the case p = 2. The analytic form follows
from the sharp L2 Euclidean Sobolev inequality. The geometric form follows from
the analytic form and also follows from an inequality proved by Lutwak–Yang–Zhang.
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The slicing problem

The Legendre ellipsoid Γ2K ⊂ X of a convex body K ⊂ X has support function
hΓ2K given by

hΓ2K(ξ)2 =
n + 2
V (K)

∫
K

〈ξ, x〉2 dx

A classical result is that
V (Γ2K) ≥ V (K),

with equality if and only if K = Γ2K.
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The slicing problem

Conjecture. There exists a positive constant c independent of the dimension n so
that the following equivalent statements hold for any origin–symmetric convex body
K ⊂ X.

1. Fix an inner product on X. Then

V (K)
n−1

n ≤ c[sup{V (K ∩ ξ⊥) : ξ ∈ X∗\{0}}].

2. The Legendre ellipsoid Γ2K of K satisfies

V (Γ2K) ≤ cnV (K).
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Open–ended Questions

• To what extent can the affine and linear invariants and inequalities be extended
to nonlinear spaces?

• What is Lp information theory?

• The analytic inequalities seem more fundamental than the geometric inequalities.
Shouldn’t there be direct proofs of the sharp Sobolev inequalities that do not rely
on geometric inequalities?

• Elucidate the affine and linear theory of convex bodies using symplectic and
projective geometry.
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