Math 549

Spring 2008

The point value of each problem is shown in parentheses. For full credit, do at least 80 points worth of problems.

- 1. (10) Let k be a nonnegative integer and $\Omega \subseteq \mathbb{R}^n$ be an open set. Show that $H^k(\mathbb{R}^n) \cap \mathscr{E}'(\Omega) \subseteq \overset{}{H^k(\Omega)}$.
- 2. (10) Let u be the distribution on \mathbb{R}^n defined by the following locally integrable function:

$$u(x^{1},...,x^{n}) = \begin{cases} 1, & x^{n} > 0, \\ 0, & x^{n} \le 0. \end{cases}$$

Determine the distributional derivatives $\partial_i u$, $\partial_i \partial_j u$, i, j = 1, ..., n.

3. (10) Suppose n > 2, and let u be the distribution on \mathbb{R}^n defined by the locally integrable function

$$u(x) = \frac{1}{|x|^{n-2}}$$

Show that the following equation holds in the distribution sense:

$$\sum_{j=1}^n \partial_j \partial_j u = c_n \delta_0,$$

where δ_0 is the distribution defined by $(\delta_0, \varphi) = \varphi(0)$, and c_n is a constant. Determine c_n .

- 4. (25) For any nonnegative integer k, show that $C_{c}^{\infty}(\mathbb{R}^{n})$ is dense in the Sobolev space $H^{k}(\mathbb{R}^{n})$, as follows.
 - (a) Show that compactly supported elements of $H^k(\mathbb{R}^n)$ are dense.
 - (b) Choose $\rho \in C_{c}^{\infty}(\mathbb{R}^{n})$ such that $\int_{\mathbb{R}^{n}} \rho(x) dx = 1$, and set $\rho_{\varepsilon}(x) = \varepsilon^{-n} \rho(x/\varepsilon)$. Show that $\int_{\mathbb{R}^{n}} \rho_{\varepsilon}(x) dx = 1$, and that $\rho_{\varepsilon} \to \delta$ as distributions (this means that $(\rho_{\varepsilon}, \varphi) \to (\delta, \varphi)$ for each $\varphi \in C_{c}^{\infty}(\mathbb{R}^{n})$).
 - (c) If $u \in H^k(\mathbb{R}^n)$ is compactly supported, define $u_{\varepsilon} = u * \rho_{\varepsilon}$. Show that $u_{\varepsilon} \in C_c^{\infty}(\mathbb{R}^n)$.
 - (d) If $u \in C_c^0(\mathbb{R}^n)$, show that $u_{\varepsilon} \to u$ uniformly.
 - (e) If $u \in L^2(\mathbb{R}^n)$, show that $u_{\varepsilon} \in L^2(\mathbb{R}^n)$, and

$$\|u_{\varepsilon}\|_{L^2} \le \|u\|_{L^2}.$$

[Hint: Write

$$|u(x-y)\rho_{\varepsilon}(y)| = (|u(x-y)||\rho_{\varepsilon}(y)|^{1/2})(|\rho_{\varepsilon}(y)|^{1/2})$$

and use the Cauchy-Schwartz inequality.]

(f) Using the fact that $C_c^0(\mathbb{R}^n)$ is dense in L^2 (by standard measure theory), and interchanging limits appropriately, show that $u_{\varepsilon} \to u$ in L^2 norm. (g) Show that, if $u \in H^k(\mathbb{R}^n)$ and $m \leq k$,

$$\frac{\partial^m u_{\varepsilon}}{\partial x^{i_1} \dots \partial x^{i_m}} = \frac{\partial^m u}{\partial x^{i_1} \dots \partial x^{i_m}} * \rho_{\varepsilon}.$$

Use this to show that

$$\frac{\partial^m u_\varepsilon}{\partial x^{i_1} \dots \partial x^{i_m}} \to \frac{\partial^m u}{\partial x^{i_1} \dots \partial x^{i_m}}$$

in L^2 norm.

- (h) Prove the result.
- 5. (10) Give a counterexample to the result of Problem 4 when \mathbb{R}^n is replaced by the unit ball in \mathbb{R}^n .
- 6. (10) Let E be any smooth vector bundle over a compact smooth manifold M. For any nonnegative integer k, show that $\Gamma(E)$ is dense in $H^k(M, E)$.
- 7. (10) For any nonnegative integer k and any open set $\Omega \subseteq \mathbb{R}^n$, show that compactly supported elements of $H^k(\Omega)$ are in $\mathring{H}^k(\Omega)$.

8. (15)

(a) For any real number s, show that a compactly supported distribution $u \in \mathscr{E}'(\mathbb{R}^n)$ is in $H^s(\mathbb{R}^n)$ if and only if it satisfies an estimate of the form

$$(u,\varphi) \le C \|\varphi\|_{H^{-s}}, \qquad \varphi \in C^{\infty}_{c}(\mathbb{R}^{n}).$$

- (b) Show that every compactly supported distribution on \mathbb{R}^n is in H_s for some s.
- 9. (10) Compute the formal adjoint of each of the following differential operators. (In each case, the metric involved is the standard Euclidean one.)

(a)
$$\nabla \colon \Gamma(T^*\mathbb{R}^n) \to \Gamma(T^2\mathbb{R}^n)$$

- (b) $P: C^{\infty}(S^1) \to C^{\infty}(S^1)$, given by $Pu(\theta) = u'(\theta) \cos \theta$.
- 10. (20) This problem outlines an alternate approach to computing the symbol of the Laplace-Beltrami operator on an oriented manifold. Suppose V is an n-dimensional vector space endowed with an inner product and an orientation. Let (e_i) be any oriented orthonormal basis for V and (e^i) the dual basis. Let μ denote the volume element determined by the inner product and the orientation (thus $\mu = e^1 \wedge \cdots \wedge e^n$). In terms of this basis, define a linear operator $*: \Lambda^k V \to \Lambda^{n-k} V$, the Hodge star operator, by setting

$$*(e^{i_1} \wedge \dots \wedge e^{i_k}) = \operatorname{sgn}(\sigma) e^{j_1} \wedge \dots \wedge e^{j_{n-k}},$$

where (j_1, \ldots, j_{n-k}) is a the unique increasing multi-index of length n-k such that

$$\{i_1,\ldots,i_k,j_1,\ldots,j_{n-k}\} = \{1,\ldots,n\},\$$

and σ is the permutation sending $(i_1, \ldots, i_k, j_1, \ldots, j_{n-k})$ to $(1, \ldots, n)$; then extend * to all of $\Lambda^k V$ by linearity.

(a) Show that, for any k-form ω , $*\omega$ is the unique (n - k)-form such that $\eta \wedge *\omega = \langle \eta, \omega \rangle \mu$ for all k-forms η . This proves that * is well-defined independently of choice of basis.

- (b) Prove that $**\omega = (-1)^{k(n-k)}\omega$ for all k-forms ω .
- (c) Let M be an oriented compact Riemannian manifold without boundary. Show that the L^2 inner product on $\Omega^k(M)$ can be written

$$(\omega,\eta) = \int_M \omega \wedge *\eta.$$

- (d) Using Stokes's theorem, show that $d^*\eta = (-1)^{n(k+1)+1} * d * \eta$ when η is a k-form.
- (e) If ξ is a 1-form and ω is a k-form, prove that

$$*(\xi \wedge \omega) = (-1)^k \xi \vee *\omega,$$

where $\xi \lor \omega = \xi^{\#} \sqcup \omega$. [Hint: it might help to prove the relation

$$\xi \lor (\omega \land \eta) = (\xi \lor \omega) \land \eta + (-1)^k \omega \land (\xi \lor \eta),$$

and use part (a).]

(f) Prove that the symbol of the Laplace-Beltrami operator is $\sigma(\Delta)(x,\xi)\omega = -|\xi|^2\omega$.

11.(20)

- (a) Show that the Laplace-Beltrami operator commutes with the Hodge star operator (see Problem 10) on k-forms.
- (b) Using the Hodge star operator and the Hodge theorem, prove the *Poincaré duality* theorem for smooth manifolds: if M is a smooth, compact, oriented *n*-manifold, then for any $0 \le k \le n$, the map $P: H^k_{dR}(M) \to (H^{n-k}_{dR}(M))^*$ given by

$$P[\omega][\eta] = \int_M \omega \wedge \eta$$

is an isomorphism. Thus dim $H^k_{dR}(M) = \dim H^{n-k}_{dR}(M)$.