Due Wednesday, June 11, 2008

The point value of each problem is shown in parentheses. For full credit, do at least 80 points worth of problems.

1. (10) Let k be a nonnegative integer and $\Omega \subseteq \mathbb{R}^{n}$ be an open set. Show that $H^{k}\left(\mathbb{R}^{n}\right) \cap \mathscr{E}^{\prime}(\Omega) \subseteq$ $\dot{H}^{k}(\Omega)$.
2. (10) Let u be the distribution on \mathbb{R}^{n} defined by the following locally integrable function:

$$
u\left(x^{1}, \ldots, x^{n}\right)= \begin{cases}1, & x^{n}>0 \\ 0, & x^{n} \leq 0\end{cases}
$$

Determine the distributional derivatives $\partial_{i} u, \partial_{i} \partial_{j} u, i, j=1, \ldots, n$.
3. (10) Suppose $n>2$, and let u be the distribution on \mathbb{R}^{n} defined by the locally integrable function

$$
u(x)=\frac{1}{|x|^{n-2}} .
$$

Show that the following equation holds in the distribution sense:

$$
\sum_{j=1}^{n} \partial_{j} \partial_{j} u=c_{n} \delta_{0}
$$

where δ_{0} is the distribution defined by $\left(\delta_{0}, \varphi\right)=\varphi(0)$, and c_{n} is a constant. Determine c_{n}.
4. (25) For any nonnegative integer k, show that $C_{\mathrm{c}}^{\infty}\left(\mathbb{R}^{n}\right)$ is dense in the Sobolev space $H^{k}\left(\mathbb{R}^{n}\right)$, as follows.
(a) Show that compactly supported elements of $H^{k}\left(\mathbb{R}^{n}\right)$ are dense.
(b) Choose $\rho \in C_{\mathrm{c}}^{\infty}\left(\mathbb{R}^{n}\right)$ such that $\int_{\mathbb{R}^{n}} \rho(x) d x=1$, and set $\rho_{\varepsilon}(x)=\varepsilon^{-n} \rho(x / \varepsilon)$. Show that $\int_{\mathbb{R}^{n}} \rho_{\varepsilon}(x) d x=1$, and that $\rho_{\varepsilon} \rightarrow \delta$ as distributions (this means that $\left(\rho_{\varepsilon}, \varphi\right) \rightarrow(\delta, \varphi)$ for each $\varphi \in C_{\mathrm{c}}^{\infty}\left(\mathbb{R}^{n}\right)$).
(c) If $u \in H^{k}\left(\mathbb{R}^{n}\right)$ is compactly supported, define $u_{\varepsilon}=u * \rho_{\varepsilon}$. Show that $u_{\varepsilon} \in C_{\mathrm{c}}^{\infty}\left(\mathbb{R}^{n}\right)$.
(d) If $u \in C_{\mathrm{c}}^{0}\left(\mathbb{R}^{n}\right)$, show that $u_{\varepsilon} \rightarrow u$ uniformly.
(e) If $u \in L^{2}\left(\mathbb{R}^{n}\right)$, show that $u_{\varepsilon} \in L^{2}\left(\mathbb{R}^{n}\right)$, and

$$
\left\|u_{\varepsilon}\right\|_{L^{2}} \leq\|u\|_{L^{2}} .
$$

[Hint: Write

$$
\left|u(x-y) \rho_{\varepsilon}(y)\right|=\left(|u(x-y)|\left|\rho_{\varepsilon}(y)\right|^{1 / 2}\right)\left(\left|\rho_{\varepsilon}(y)\right|^{1 / 2}\right)
$$

and use the Cauchy-Schwartz inequality.]
(f) Using the fact that $C_{\mathrm{c}}^{0}\left(\mathbb{R}^{n}\right)$ is dense in L^{2} (by standard measure theory), and interchanging limits appropriately, show that $u_{\varepsilon} \rightarrow u$ in L^{2} norm.
(g) Show that, if $u \in H^{k}\left(\mathbb{R}^{n}\right)$ and $m \leq k$,

$$
\frac{\partial^{m} u_{\varepsilon}}{\partial x^{i_{1}} \ldots \partial x^{i_{m}}}=\frac{\partial^{m} u}{\partial x^{i_{1}} \ldots \partial x^{i_{m}}} * \rho_{\varepsilon} .
$$

Use this to show that

$$
\frac{\partial^{m} u_{\varepsilon}}{\partial x^{i_{1}} \ldots \partial x^{i_{m}}} \rightarrow \frac{\partial^{m} u}{\partial x^{i_{1}} \ldots \partial x^{i_{m}}}
$$

in L^{2} norm.
(h) Prove the result.
5. (10) Give a counterexample to the result of Problem 4 when \mathbb{R}^{n} is replaced by the unit ball in \mathbb{R}^{n}.
6. (10) Let E be any smooth vector bundle over a compact smooth manifold M. For any nonnegative integer k, show that $\Gamma(E)$ is dense in $H^{k}(M, E)$.
7. (10) For any nonnegative integer k and any open set $\Omega \subseteq \mathbb{R}^{n}$, show that compactly supported elements of $H^{k}(\Omega)$ are in $\dot{H}^{k}(\Omega)$.
8. (15)
(a) For any real number s, show that a compactly supported distribution $u \in \mathscr{E}^{\prime}\left(\mathbb{R}^{n}\right)$ is in $H^{s}\left(\mathbb{R}^{n}\right)$ if and only if it satisfies an estimate of the form

$$
(u, \varphi) \leq C\|\varphi\|_{H^{-s}}, \quad \varphi \in C_{c}^{\infty}\left(\mathbb{R}^{n}\right)
$$

(b) Show that every compactly supported distribution on \mathbb{R}^{n} is in H_{s} for some s.
9. (10) Compute the formal adjoint of each of the following differential operators. (In each case, the metric involved is the standard Euclidean one.)
(a) $\nabla: \Gamma\left(T^{*} \mathbb{R}^{n}\right) \rightarrow \Gamma\left(T^{2} \mathbb{R}^{n}\right)$.
(b) $P: C^{\infty}\left(S^{1}\right) \rightarrow C^{\infty}\left(S^{1}\right)$, given by $P u(\theta)=u^{\prime}(\theta) \cos \theta$.
10. (20) This problem outlines an alternate approach to computing the symbol of the LaplaceBeltrami operator on an oriented manifold. Suppose V is an n-dimensional vector space endowed with an inner product and an orientation. Let $\left(e_{i}\right)$ be any oriented orthonormal basis for V and $\left(e^{i}\right)$ the dual basis. Let μ denote the volume element determined by the inner product and the orientation (thus $\mu=e^{1} \wedge \cdots \wedge e^{n}$). In terms of this basis, define a linear operator $*: \Lambda^{k} V \rightarrow \Lambda^{n-k} V$, the Hodge star operator, by setting

$$
*\left(e^{i_{1}} \wedge \cdots \wedge e^{i_{k}}\right)=\operatorname{sgn}(\sigma) e^{j_{1}} \wedge \cdots \wedge e^{j_{n-k}}
$$

where $\left(j_{1}, \ldots, j_{n-k}\right)$ is a the unique increasing multi-index of length $n-k$ such that

$$
\left\{i_{1}, \ldots, i_{k}, j_{1}, \ldots, j_{n-k}\right\}=\{1, \ldots, n\}
$$

and σ is the permutation sending $\left(i_{1}, \ldots, i_{k}, j_{1}, \ldots, j_{n-k}\right)$ to $(1, \ldots, n)$; then extend $*$ to all of $\Lambda^{k} V$ by linearity.
(a) Show that, for any k-form ω, $* \omega$ is the unique $(n-k)$-form such that $\eta \wedge * \omega=\langle\eta, \omega\rangle \mu$ for all k-forms η. This proves that $*$ is well-defined independently of choice of basis.
(b) Prove that $* * \omega=(-1)^{k(n-k)} \omega$ for all k-forms ω.
(c) Let M be an oriented compact Riemannian manifold without boundary. Show that the L^{2} inner product on $\Omega^{k}(M)$ can be written

$$
(\omega, \eta)=\int_{M} \omega \wedge * \eta
$$

(d) Using Stokes's theorem, show that $d^{*} \eta=(-1)^{n(k+1)+1} * d * \eta$ when η is a k-form.
(e) If ξ is a 1 -form and ω is a k-form, prove that

$$
*(\xi \wedge \omega)=(-1)^{k} \xi \vee * \omega,
$$

where $\left.\xi \vee \omega=\xi^{\#}\right\lrcorner \omega$. [Hint: it might help to prove the relation

$$
\xi \vee(\omega \wedge \eta)=(\xi \vee \omega) \wedge \eta+(-1)^{k} \omega \wedge(\xi \vee \eta)
$$

and use part (a).]
(f) Prove that the symbol of the Laplace-Beltrami operator is $\sigma(\Delta)(x, \xi) \omega=-|\xi|^{2} \omega$.
11. (20)
(a) Show that the Laplace-Beltrami operator commutes with the Hodge star operator (see Problem 10) on k-forms.
(b) Using the Hodge star operator and the Hodge theorem, prove the Poincaré duality theorem for smooth manifolds: if M is a smooth, compact, oriented n-manifold, then for any $0 \leq k \leq n$, the map $P: H_{d R}^{k}(M) \rightarrow\left(H_{d R}^{n-k}(M)\right)^{*}$ given by

$$
P[\omega][\eta]=\int_{M} \omega \wedge \eta
$$

is an isomorphism. Thus $\operatorname{dim} H_{d R}^{k}(M)=\operatorname{dim} H_{d R}^{n-k}(M)$.

