1. Let $E \rightarrow M$ be a k-dimensional (real or complex) vector bundle. Suppose there exists a global nonvanishing section Ω of $\Lambda^{k} E$, and give E the corresponding structure group $G=S L(k, \mathbb{R})$ or $S L(k, \mathbb{C})$. Prove that a connection ∇ on E is a G-connection if and only if $\nabla \Omega \equiv 0$.
2. Let $E \rightarrow M$ be a smooth vector bundle. Recall that a connection ∇ in E is said to be flat if its curvature vanishes identically. Show that ∇ is flat if and only if for each $p \in M$, there exists a parallel frame for E in a neighborhood of p.
3. Let $E \rightarrow M$ be a smooth vector bundle with structure group G, and let ∇ be a G-connection in E. Show that in a neighborhood of each $p \in M$, there is a local G-frame (s_{α}) for E such that $\nabla s_{\alpha}=0$ at p for each α. [Hint: Start with any G-frame at p, and parallel translate along radial lines in some coordinate chart centered at p. Why is the resulting frame smooth?]
4. (a) Let G be a Lie group, and let θ be its Maurer-Cartan form. Prove that θ satisfies the following identity, known as the Maurer-Cartan equation:

$$
d \theta+\frac{1}{2}[\theta, \theta]=0 .
$$

(b) If $P=M \times G \rightarrow M$ is the canonical trivial principal G-bundle over M, show that $\pi_{2}^{*} \theta$ is a flat connection on P, where π_{2} is projection onto G and θ is the Maurer-Cartan form of G.
5. Let G be a Lie group and \mathfrak{g} its Lie algebra. Let $P \rightarrow M$ be a smooth principal G-bundle, let ω be a connection on P, and let $H \subseteq T P$ be its horizontal distribution. For each $X \in \mathfrak{g}$, let \widehat{X} denote the corresponding fundamental vector field on P.
(a) For each $X \in \mathfrak{g}$, show that $\mathscr{L}_{\hat{X}} \omega=-\operatorname{ad}(X) \circ \omega$, where ad: $\mathfrak{g} \rightarrow \mathfrak{g l}(\mathfrak{g})$ is the adjoint representation of \mathfrak{g}, defined by $\operatorname{ad}(X)(Y)=[X, Y]$. (Recall from [ISM] that ad is the induced Lie algebra homomorphism associated with Ad: $G \rightarrow \mathrm{GL}(\mathfrak{g})$.)
(b) If Y is a smooth horizontal vector field on P and $X \in \mathfrak{g}$, show that $[\widehat{X}, Y]$ is horizontal.
(c) For any $X, Y \in \mathfrak{g}$, show that $[\widehat{X}, \widehat{Y}]=\widehat{[X, Y]}$.
(d) For any smooth k-form η on P, define the horizontal exterior derivative of $\boldsymbol{\eta}$ by

$$
d_{H} \eta\left(X_{1}, \ldots, X_{k+1}\right)=d \eta\left(\pi_{H} X_{1}, \ldots, \pi_{H} X_{k}\right),
$$

where $\pi_{H}: T P \rightarrow H$ is the projection onto H with kernel V. Prove that the curvature form Ω of ω satisfies $\Omega=d_{H} \omega$.
6. Let M be a smooth n-manifold, and let $F(M)$ be the frame bundle of M, considered as a principal GL (n, \mathbb{R})-bundle with projection $\pi: F(M) \rightarrow M$. A point $f \in F(M)$ is a basis for the tangent space $T_{x} M$, where $x=\pi(f) \in M$; such a basis can be identified with a linear isomorphism $f: \mathbb{R}^{n} \rightarrow T_{x} M$. Define an \mathbb{R}^{n}-valued 1-form θ on $F(M)$, called the soldering form, by

$$
\theta_{f}(X)=f^{-1}\left(d \pi_{f}(X)\right)
$$

(a) Show that θ is smooth.
(b) Let ω be a connection on $F(M)$, and define a smooth \mathbb{R}^{n}-valued 2-form Θ on $F(M)$ by

$$
\Theta=d \theta+\omega \wedge \theta, \quad \text { i.e., } \quad \Theta^{i}=d \theta^{i}+\omega_{j}^{i} \wedge \theta^{j} .
$$

Show that

$$
d_{H} \Theta=d \Theta+\omega \wedge \Theta=\Omega \wedge \theta,
$$

where Ω is the curvature 2 -form of ω.
(c) Let ∇ be the connection on $T M$ corresponding to ω. Show that Θ is identically zero if and only if ∇ is symmetric.
7. Let M be a connected smooth manifold, let $E \rightarrow M$ be a smooth rank- k vector bundle, and let ∇ be a connection in E. Choose a basepoint $p \in M$, and for any piecewise smooth loop $\gamma:[0,1] \rightarrow M$ based at p, let $P_{\gamma}: E_{p} \rightarrow E_{p}$ be the linear map defined by parallel transport:

$$
P_{\gamma}(X)=\bar{X}(1),
$$

where $\bar{X}(t), t \in[0,1]$, is the parallel vector field along γ satisfying $\bar{X}(0)=X$. Define a subset $H \subseteq \mathrm{GL}\left(E_{p}\right)$ by

$$
H=\left\{P_{\gamma}: \gamma \text { is a piecewise smooth loop based at } p\right\} .
$$

(a) Show that H is a subgroup of $\operatorname{GL}\left(E_{p}\right)$, called the holonomy group of $\boldsymbol{\nabla}$ at \boldsymbol{p}.
(b) By choosing a basis for E_{p}, we may identify $\operatorname{GL}\left(E_{p}\right)$ with $\mathrm{GL}(k, \mathbb{R})$. Show that, up to conjugacy, the resulting subgroup $H \subseteq G \mathrm{GL}(k, \mathbb{R})$ is independent of choices: If we choose any other point $p^{\prime} \in M$ and any basis for $E_{p^{\prime}}$, then the resulting group H^{\prime} is conjugate in $\operatorname{GL}(k, \mathbb{R})$ to H.
(c) Show that E admits a reduction to H.
(d) If E admits a reduction to some subgroup $G \subseteq \mathrm{GL}(k, \mathbb{R})$ and ∇ is a G-connection, show that H is conjugate to a subgroup of G.
8. Let M, E, and ∇ be as in Problem 7. If the connection ∇ is flat, then the pair (M, ∇) is called a flat bundle over M.
(a) If γ is a piecewise smooth loop in M based at $p \in M$, show that $P_{\gamma}: E_{p} \rightarrow E_{p}$ depends only on the path homotopy class of γ in $\pi_{1}(M, p)$.
(b) Show that the map $P: \pi_{1}(M, p) \rightarrow G L\left(E_{p}\right)$ so defined is a representation of $\pi_{1}(M, p)$, called the holonomy representation.
(c) We say that two flat bundles (E, ∇) and $(\widetilde{E}, \widetilde{\nabla})$ over M are equivalent over M if there is a bundle isomorphism $F: E \rightarrow \widetilde{E}$ covering the identity of M such that $F^{*} \widetilde{\nabla}=\nabla$, where $F^{*} \widetilde{\nabla}$ is the connection on E defined by $F^{*} \widetilde{\nabla}(\sigma)=F^{-1}(\widetilde{\nabla}(F \circ \sigma))$. For any group Γ, two representations $\rho: \Gamma \rightarrow G L(V), \tilde{\rho}: \Gamma \rightarrow G L(\widetilde{V})$ are said to be isomorphic representations if there is an isomorphism $\varphi: V \rightarrow \widetilde{V}$ such that $\varphi \circ \rho(g)=\tilde{\rho}(g) \circ \varphi$ for all $g \in \Gamma$. Show that the holonomy representation gives a one-to-one correspondence between isomorphism classes of finite-dimensional representations of $\pi_{1}(M, p)$ and equivalence classes of smooth flat bundles over M.

