Math 549

- 1. Let $E \to M$ be a k-dimensional (real or complex) vector bundle. Suppose there exists a global nonvanishing section Ω of $\Lambda^k E$, and give E the corresponding structure group $G = SL(k, \mathbb{R})$ or $SL(k, \mathbb{C})$. Prove that a connection ∇ on E is a G-connection if and only if $\nabla \Omega \equiv 0$.
- 2. Let $E \to M$ be a smooth vector bundle. Recall that a connection ∇ in E is said to be *flat* if its curvature vanishes identically. Show that ∇ is flat if and only if for each $p \in M$, there exists a parallel frame for E in a neighborhood of p.
- 3. Let $E \to M$ be a smooth vector bundle with structure group G, and let ∇ be a G-connection in E. Show that in a neighborhood of each $p \in M$, there is a local G-frame (s_{α}) for E such that $\nabla s_{\alpha} = 0$ at p for each α . [Hint: Start with any G-frame at p, and parallel translate along radial lines in some coordinate chart centered at p. Why is the resulting frame smooth?]
- 4. (a) Let G be a Lie group, and let θ be its Maurer-Cartan form. Prove that θ satisfies the following identity, known as the *Maurer-Cartan equation*:

$$d\theta + \frac{1}{2}[\theta, \theta] = 0.$$

- (b) If $P = M \times G \to M$ is the canonical trivial principal *G*-bundle over *M*, show that $\pi_2^* \theta$ is a flat connection on *P*, where π_2 is projection onto *G* and θ is the Maurer–Cartan form of *G*.
- 5. Let G be a Lie group and \mathfrak{g} its Lie algebra. Let $P \to M$ be a smooth principal G-bundle, let ω be a connection on P, and let $H \subseteq TP$ be its horizontal distribution. For each $X \in \mathfrak{g}$, let \widehat{X} denote the corresponding fundamental vector field on P.
 - (a) For each $X \in \mathfrak{g}$, show that $\mathscr{L}_{\hat{X}}\omega = -\operatorname{ad}(X) \circ \omega$, where $\operatorname{ad}: \mathfrak{g} \to \mathfrak{gl}(\mathfrak{g})$ is the adjoint representation of \mathfrak{g} , defined by $\operatorname{ad}(X)(Y) = [X, Y]$. (Recall from [ISM] that ad is the induced Lie algebra homomorphism associated with Ad: $G \to \operatorname{GL}(\mathfrak{g})$.)
 - (b) If Y is a smooth horizontal vector field on P and $X \in \mathfrak{g}$, show that $[\widehat{X}, Y]$ is horizontal.
 - (c) For any $X, Y \in \mathfrak{g}$, show that $[\widehat{X}, \widehat{Y}] = [X, \widehat{Y}]$.
 - (d) For any smooth k-form η on P, define the **horizontal exterior derivative of** η by

$$d_H\eta(X_1,\ldots,X_{k+1})=d\eta(\pi_HX_1,\ldots,\pi_HX_k),$$

where $\pi_H \colon TP \to H$ is the projection onto H with kernel V. Prove that the curvature form Ω of ω satisfies $\Omega = d_H \omega$.

6. Let M be a smooth *n*-manifold, and let F(M) be the frame bundle of M, considered as a principal $GL(n, \mathbb{R})$ -bundle with projection $\pi: F(M) \to M$. A point $f \in F(M)$ is a basis for the tangent space T_xM , where $x = \pi(f) \in M$; such a basis can be identified with a linear isomorphism $f: \mathbb{R}^n \to T_xM$. Define an \mathbb{R}^n -valued 1-form θ on F(M), called the *soldering form*, by

$$\theta_f(X) = f^{-1}(d\pi_f(X)).$$

(a) Show that θ is smooth.

(b) Let ω be a connection on F(M), and define a smooth \mathbb{R}^n -valued 2-form Θ on F(M) by

$$\Theta = d\theta + \omega \wedge \theta$$
, i.e., $\Theta^i = d\theta^i + \omega^i_i \wedge \theta^j$.

Show that

$$d_H\Theta = d\Theta + \omega \wedge \Theta = \Omega \wedge \theta.$$

where Ω is the curvature 2-form of ω .

- (c) Let ∇ be the connection on TM corresponding to ω . Show that Θ is identically zero if and only if ∇ is symmetric.
- 7. Let M be a connected smooth manifold, let $E \to M$ be a smooth rank-k vector bundle, and let ∇ be a connection in E. Choose a basepoint $p \in M$, and for any piecewise smooth loop $\gamma: [0, 1] \to M$ based at p, let $P_{\gamma}: E_p \to E_p$ be the linear map defined by parallel transport:

$$P_{\gamma}(X) = \overline{X}(1),$$

where $\overline{X}(t), t \in [0, 1]$, is the parallel vector field along γ satisfying $\overline{X}(0) = X$. Define a subset $H \subseteq \operatorname{GL}(E_p)$ by

 $H = \{P_{\gamma} : \gamma \text{ is a piecewise smooth loop based at } p\}.$

- (a) Show that H is a subgroup of $GL(E_p)$, called the **holonomy group of** ∇ at p.
- (b) By choosing a basis for E_p , we may identify $\operatorname{GL}(E_p)$ with $\operatorname{GL}(k, \mathbb{R})$. Show that, up to conjugacy, the resulting subgroup $H \subseteq \operatorname{GL}(k, \mathbb{R})$ is independent of choices: If we choose any other point $p' \in M$ and any basis for $E_{p'}$, then the resulting group H' is conjugate in $\operatorname{GL}(k, \mathbb{R})$ to H.
- (c) Show that E admits a reduction to H.
- (d) If E admits a reduction to some subgroup $G \subseteq GL(k, \mathbb{R})$ and ∇ is a G-connection, show that H is conjugate to a subgroup of G.
- 8. Let M, E, and ∇ be as in Problem 7. If the connection ∇ is flat, then the pair (M, ∇) is called a *flat bundle over* M.
 - (a) If γ is a piecewise smooth loop in M based at $p \in M$, show that $P_{\gamma} \colon E_p \to E_p$ depends only on the path homotopy class of γ in $\pi_1(M, p)$.
 - (b) Show that the map $P: \pi_1(M, p) \to GL(E_p)$ so defined is a representation of $\pi_1(M, p)$, called the **holonomy representation**.
 - (c) We say that two flat bundles (E, ∇) and (E, ∇) over M are **equivalent over** M if there is a bundle isomorphism $F: E \to \tilde{E}$ covering the identity of M such that $F^* \tilde{\nabla} = \nabla$, where $F^* \tilde{\nabla}$ is the connection on E defined by $F^* \tilde{\nabla}(\sigma) = F^{-1}(\tilde{\nabla}(F \circ \sigma))$. For any group Γ , two representations $\rho: \Gamma \to GL(V)$, $\tilde{\rho}: \Gamma \to GL(\tilde{V})$ are said to be **isomorphic representations** if there is an isomorphism $\varphi: V \to \tilde{V}$ such that $\varphi \circ \rho(g) = \tilde{\rho}(g) \circ \varphi$ for all $g \in \Gamma$. Show that the holonomy representation gives a one-to-one correspondence between isomorphism classes of finite-dimensional representations of $\pi_1(M, p)$ and equivalence classes of smooth flat bundles over M.