1. Let \(E \to M \) be a smooth complex vector bundle, and let \(\overline{E} \) be the complex vector bundle whose fiber \(\overline{E}_x \) at each point \(x \in M \) is equal to \(E_x \), but with complex multiplication defined by \((a, v) \mapsto \bar{a}v \). Show that \(\overline{E} \) is isomorphic to \(E^* \) but not necessarily to \(E \).

2. Let \(M \) be a complex manifold, and let \(\pi : E \to M \) be a smooth complex vector bundle. A Cauchy-Riemann operator on \(E \) is a \(\mathbb{C} \)-linear map \(\overline{\partial} : \Gamma(E) \to \Gamma(\Lambda^{0,1} \otimes E) \) satisfying

 (i) \(\overline{\partial}(f \sigma) = (\overline{\partial} f) \otimes \sigma + f \overline{\partial} \sigma \) for all smooth complex-valued functions \(f \).

 (ii) \(\overline{\partial} (W \sigma) - W (\overline{\partial} \sigma) = [\overline{\partial}, W] \sigma \) for all \(\overline{\partial}, W \in T''M \).

 (In part (ii), we define \(\overline{\partial} \sigma \) as in Problem 8 on Assignment 3. It follows from that problem that every holomorphic vector bundle admits a Cauchy-Riemann operator.) If \(E \) is endowed with a Cauchy-Riemann operator, show that \(E \) has a unique structure as a holomorphic vector bundle such that the holomorphic sections of \(E \) are exactly those in the kernel of \(\overline{\partial} \). [Hint: If \((e_k) \) is a smooth local frame for \(E \) over \(U \subset M \), show that the \((0,1) \)-forms \(\theta^i_k \) on \(U \) defined by \(\overline{\partial} e_k = \theta^i_k \otimes e_j \) satisfy \(\overline{\partial} \theta^i_k + \theta^j_i \wedge \theta^k_i = 0 \). Let \((z^j) \) be local holomorphic coordinates for \(U \) and let \((z^j, b^k) \) be the (complex-valued) coordinates on \(\pi^{-1}(U) \subset E \) defined by the local frame \((e_k) \), via the correspondence \((z^j, b^k) \leftrightarrow b^k e_k \mid z \). Show that there is a unique integrable complex structure on the total space of \(E \) such that \(\Lambda^{1,0}E \) is locally spanned by \((\pi^* dz^j, db^j + b^k \pi^* \theta^j_k) \), and apply the Newlander-Nirenberg theorem.]

3. Let \(\Sigma \) be a Riemann surface and let \(g \) be a Kähler metric on \(\Sigma \). If \(z \) is any local holomorphic coordinate on \(\Sigma \), show that the holomorphic sectional curvature of \(g \) is equal to its Gaussian curvature, and both are equal to

 \[-\frac{1}{u} \frac{\partial^2}{\partial z \partial \overline{z}} \log u,\]

 where \(u = g_C(\partial/\partial z, \partial/\partial \overline{z}) \). Use this formula to compute the Gaussian curvatures of the 1-dimensional Fubini-Study and complex hyperbolic metrics.

4. Let \(Q \subset \mathbb{CP}^2 \) be the quadric curve defined by the homogeneous polynomial \(z^1 z^2 - (z^3)^2 \). Compute the Gaussian curvature and the area of \(Q \) in the metric obtained by restricting the Fubini-Study metric to \(Q \).

5. Let \(E \to M \) be a smooth complex vector bundle of rank \(k \). Show that \(c^R_1(E) = c^R_1(\Lambda^k E) \), where \(\Lambda^k E \) denotes the bundle of antisymmetric contravariant \(k \)-tensors on \(E \) and \(c^R_1 \) denotes the real first Chern class.
6. **PROBLEM DELETED**

7. Let \(\pi: E \to M \) and \(\pi': E' \to M' \) be smooth complex vector bundles of rank \(k \), and let \(F: E \to E' \) be a smooth bundle map covering \(f: M \to M' \). (Recall that this means \(\pi' \circ F = f \circ \pi \), and for each \(x \in M \), the map \(F_x = F|_{E_x}: E_x \to E'_x \) is a linear isomorphism.)

(a) If \((e'_j) \) is a smooth frame for \(E' \) over an open set \(U' \subset M' \), show that there is a unique smooth frame \((e_j) \) for \(E \) over \(f^{-1}(U') \) such that \(F \circ e_j = e'_j \circ f \) for each \(j \).

(b) If \(\nabla' \) is a connection on \(E' \), show that there is a unique connection \(\nabla \) on \(E \), called the pullback connection, with the property that

\[
\nabla_X e_j = F^{-1}_x \nabla'_{f^*X}(e'_j)
\]

whenever the frames \((e_j) \) and \((e'_j) \) are related as in part (a).

(c) For each \(j = 1, \ldots, k \), show that \(c^R_j(E) = f^* c^R_j(E') \).

8. (a) Show that \(U(n+1) \) acts transitively on \(\mathbb{CP}^n \) by projective transformations.

(b) Show that the Fubini-Study metric is \(U(n+1) \)-invariant, and is, up to a constant multiple, the unique \(U(n+1) \)-invariant metric on \(\mathbb{CP}^n \).

9. (a) Let \(U(n, 1) \) be the subgroup of \(GL(n+1, \mathbb{C}) \) leaving invariant the following hermitian bilinear form:

\[
H = dz^1 \otimes \overline{dz^1} + \cdots + dz^n \otimes \overline{dz^n} - dz^{n+1} \otimes \overline{dz^{n+1}}.
\]

Considering the unit ball \(\mathbb{B}^{2n} \subset \mathbb{C}^n \subset \mathbb{CP}^n \) as a subset of projective space, show that \(U(n, 1) \) acts transitively on \(\mathbb{B}^{2n} \) by projective transformations.

(b) Let \(g \) be the complex hyperbolic metric on \(\mathbb{B}^{2n} \), defined by the Kähler form \(\omega = \frac{i}{2} \partial \overline{\partial} \log(|z|^2 - 1) \). Show that \(g \) is, up to a constant multiple, the unique \(U(n, 1) \)-invariant metric on \(\mathbb{B}^{2n} \).

(c) Show that \(g \) has constant holomorphic sectional curvature equal to \(-4\).

10. Let \(M \) be a complex manifold of dimension \(n \), and let \(g \) be a Kähler metric on \(M \) with constant holomorphic sectional curvature \(C \).

(a) Let \(X, Y \in T_x M \) be a pair of orthonormal vectors. Show that the (ordinary) sectional curvature of \(g \) in the direction of the plane spanned by \((X, Y) \) is given by

\[
K(X, Y) = \frac{1}{4} C \left(1 + 3 \langle X, JY \rangle^2 \right).
\]

(b) If \(n \geq 2 \), show that at each point of \(M \), the (ordinary) sectional curvatures of \(g \) take on all values between \(\frac{1}{4} C \) and \(C \), inclusive.